欢迎登录材料期刊网

材料期刊网

高级检索

利用差示扫描量热法(DSC)研究了2139铝合金在时效过程中的相变行为和析出序列,并测试了合金不同状态下的硬度及电导率,利用透射电镜(TEM)研究了合金的微观组织特征.结果表明:2139合金在时效过程中,随着温度的升高,DSC曲线上出现3个放热峰,其峰值温度分别为171,230和276℃,分别对应着合金中的3个析出过程,即Cu原子的偏聚形成GP,Ω相在{111}<,Al>面上的析出和θ/θ相在{001}<,Al>的析出过程.合金的时效析出序列为:α<,sss>→GPzone,Mg-Ag cluster→Ω相→θ'相→θ相.在时效初期,由于固溶原子脱溶而降低了晶格畸变程度,从而使得电导率略有降低,而后随着时效温度的升高,析出相的数量和种类也越来越多,电导率逐渐升高;合金的硬度随着时效温度的升高而升高,但当温度达到330℃时,由于析出相发生粗化和长大而导致硬度降低.

参考文献

[1] Ring S P;Sofyan B T;Prasad K S;Quan Q C .Precipitation reactions in Al-4.OCu-O 3Mg (wt%) alloy[J].Acta Materialia,2008,56:2147.
[2] Wang S C;Starink M J;Gao N .Precipitation hardening in AlCu-Mg alloys revisited[J].Scripta Materialia,2006,54:287.
[3] Novelo-Peralta O;Gonzalez G;Lara-Rodriguez G A .Characterization of precipitation in Al-Cu-Mg alloys by X-ray diffraction peak broadening analysis[J].Materials Characterization,2008,59:773.
[4] Winkelman G B;Raviprasad K;Muddle B C .Orientation relationships and lattice matching for the S phase in Al-Cu-Mg alloys[J].Acta Materialia,2007,55:3213.
[5] Mukhopadhyay A K;Singh V;Prasad K S;Chakravorty C R .On S(Al《,2》CuMg) precipitation in an Al-Cu-Mg alloy containing small additions of beryllium[J].Acta Materialia,1996,44(08):3115.
[6] Kovarik L;Miller MK;Court SA;Mills MJ .Origin of the modified orientation relationship for S(S '')-phase in Al-Mg-Cu alloys[J].Acta materialia,2006(7):1731-1740.
[7] Wang S C;Starink M J .The assessment of GPB2/S" structure in Al-Cu-Mg alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,386:156.
[8] Bakavos D;Prangnell p B;Bes B;Eborl F .The effect of silver on mierostructural evolution in two 2xxx series Al-alloys with a high Cu:Mg ratio during ageing to T8 temper[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2008,419:214.
[9] S.P.Ringer;T.Sakurai;I.J.Polmear .Origins Of Hardening In Aged Al-Cu-Mg-(Ag) alloys[J].Acta materialia,1997(9):3731-3744.
[10] L.Reich;M.Murayama;K.Hono .Evolution of Ω phase in an Al-Cu-Mg-Ag alloy- a three-dimensional atom probe study[J].Acta materialia,1998(17):6053-6062.
[11] Mukhopadhyay A K;Eggeler G;Skrotzki B .Nucleation of Ωphase in an Al-Cu-Mg-Ag alloy aged at temperatures bellow,200℃[J].Scripta Materialia,2001,44:545.
[12] S. P. RINGER;K. HONO;I. J. POLMEAR .NUCLEATION OF PRECIPITATES IN AGED Al-Cu-Mg-(Ag) ALLOYS WITH HIGH Cu:Mg RATIOS[J].Acta materialia,1996(5):1883-1898.
[13] Lumley R N;Morton A J;Polmear I J .Enhanced creep per formance in an Al-Cu-Mg-Ag alloy through underageing[J].Acta Materialia,2002,50:3597.
[14] Gable B M;Shifter G J;Starke E A Jr .Alloy development for the enhanced stability of Ω precipitates in Al-Cu-Mg-Ag alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2006,37(04):1091.
[15] R. N. Lumley;I. J. Polmear .The effect of long term creep exposure on the microstructure and properties of an underaged Al–Cu–Mg–Ag alloy[J].Scripta materialia,2004(9):1227-1231.
[16] Kazanjian S M;Wang N;Starke E A Jr .Creep Behavior and microstructural stability of Al-Cu-Mg-Ag and Al-Cu-Li-Mg-Ag alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1997,234-236:571.
[17] 熊益民,张永安,朱宝宏,王锋,刘红伟,熊柏青.Al-4.8Cu-0.5Mg-0.3Ag-0.15Zr合金的热变形研究[J].稀有金属,2009(01):6-11.
[18] Cho A;Bes B .Damage tolerance capability of an Al-Ca-Mg-Ag alloy(2139)[J].Materials Science Forum,2006,519-521:603.
[19] Sun Lipeng;Irving D L;Ziky M A;Brenner D W .First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the All Ω interface in an Al-Cu-Mg-Ag alloy[J].Acta Materialia,2009,57:3522.
[20] Xiao D H;Song M .Superplastic deformation of an as-rolled Al-Cu-Mg-Ag alloy[J].Materials & Design,2009,30:424.
[21] Ferragut R;Dupasquier A;Macohi C E;Somoza A Lumley R N Polmear I J .Vacancy-solute interactions during multiplestep ageing of an Al-Cu-Mg-Ag alloy[J].Scripta Materialia,2009,60:137.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%