欢迎登录材料期刊网

材料期刊网

高级检索

采用阳极氧化法在钛基底上生长了一维高度有序TiO2纳米管阵列,并与CdSe四脚状晶体及CdSe量子点组装成一种新型的量子点敏化太阳能电池( QDSSCs).该阵列结构为光生电子的传递提供了快速通道,CdSe四脚状三维空间结构增加了其吸附在TiO2纳米管阵列的稳定性.采用XRD,SEM和HR-TEM对阵列及CdSe四脚状和量子点进行了表征.考察了CdSe四脚状和量子点敏化纳米管阵列三电极电池结构的光电性能.XRD谱图表明TiO2的锐钛矿晶型特征峰没有发生变化,同时出现了一系列的CdSe六方晶型和立方晶型特征峰.SEM图表明所制备的TiO2具有高度有序的纳米管阵列结构,且孔径大小均一、约为120 nm,长度近13.8 μm.TEM和HRTEM图表明CdSe量子点具有四脚结构,CdSe核的直径约为4.1nm,臂宽约为3.1nm,臂长约为16.0nm.结果表明:通过四脚状CdSe修饰TiO2纳米管阵列基电极在可见光谱区域的吸收得到了明显增强;此外,在模拟太阳光(AM 1.5 100 mW·cm-2)的照射下,四脚状CdSe敏化比CdSe量子点敏化TiO2纳米管阵列三电极结构电池的光电转换效率高,它们分别为0.13%和0.30%.

参考文献

[1] 何宇亮,丁建宁,彭英才,高晓妮.对硅薄膜型太阳电池的一些思考[J].物理,2008(12):862-869.
[2] Gratzel M .Solar energy conversion by dye-sensitized photovoltaic cells[J].Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics,2005(20):6841-6851.
[3] Nozik AJ. .Quantum dot solar cells[J].Physica, E. Low-dimensional systems & nanostructures,2002(1/2):115-120.
[4] Klimov V I .Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals:implications for lasing and solar energy conversion[J].Journal of Physical Chemistry B,2006,110:16827.
[5] Kamat P V .Quantum dot solar cells:semiconductor nanocrystals as light harvesters[J].Journal of Physical Chemistry C,2008,112:18737.
[6] Hodes G .Comparison of dye-and semiconductor-sensitized porous nanocrystalline liquid junction solar cells[J].Journal of Physical Chemistry C,2008,112:17778.
[7] Wang C J;Moonsub S;Philippe G .Electrochromic nanocrystal quantum dots[J].Nature,2001,291:2390.
[8] Toyoda T.;Sato J.;Shen Q. .Effect of sensitization by quantum-sized CdS on photoacoustic and photoelectrochemical current spectra of porous TiO2 electrodes[J].Review of Scientific Instruments,2003(1):297-299.
[9] Peter L M;Rileyd J;Tulle J .Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots[J].Chemical Communications,2002,10:1030.
[10] Yu WW.;Qu LH.;Guo WZ.;Peng XG. .Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals[J].Chemistry of Materials,2003(14):2854-2860.
[11] Wang P;Zakeeruddin S M;Moser J E .Stable new sensitizer with improved light harvesting for nanocrystalline dye sensitized solar cells[J].Advanced Materials,2004,16:1806.
[12] Vogel R;Hoyer P;Weller H .Quantum-sized PdS,CdS,Ag2S,Sb2 S3 and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J].Journal of Physical Chemistry,1994,98:3183.
[13] Schaller RD;Sykora M;Pietryga JM;Klimov VI .Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers[J].Nano letters,2006(3):424-429.
[14] Trinh MT;Houtepen AJ;Schins JM;Hanrath T;Piris J;Knulst W;Goossens APLM;Siebbeles LDA .In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals[J].Nano letters,2008(6):1713-1718.
[15] Robel I;Subramanian V;Kuno M .Quantum dot solar cells harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films[J].Journal of the American Chemical Society,2006,128:2385.
[16] Plass R;Pelet S;Krueger J .Quantum dot sensitization of organic-inorganic hybrid solar cells[J].Journal of Physical Chemistry B,2002,106:7578.
[17] Peter L M;Wijayantha K G U;Riley D J;Waggett J P .Bandedge tuning in self assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2[J].Journal of Physical Chemistry B,2003,107:8378.
[18] O'Regan B;Gratzel M .A low-cost high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J].Nature,1991,353:737.
[19] Chu SZ.;Wada K.;Inoue S.;Todoroki S. .Synthesis and characterization of titania nanostructures on glass by Al anodization and sol-gel process[J].Chemistry of Materials,2002(1):266-272.
[20] Jung J H;Kobayashi H;Bommel K J C;Shinkai S Shimizu T .Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organngel template[J].Chemistry of Materials,2002,14(04):1445.
[21] Kasuga T.;Hoson A.;Sekino T.;Niihara K.;Hiramatsu M. .Formation of titanium oxide nanotube[J].Langmuir: The ACS Journal of Surfaces and Colloids,1998(12):3160-3163.
[22] Gong D W;Grimes Craig A;Varghese Oomman K .Titanium oxide nanotube arrays prepared by anodic oxidation[J].Journal of Materials Research,2001,169(12):3331.
[23] Paulose M;Shankar K;Yoriya S;Prakasam H E Varghese O K Mor G K Latempa T A Fitzgerald A Grimes C A .Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length[J].Journal of Physical Chemistry B,2006,110(33):16179.
[24] Albu S P;Ghicov A;Macak J M;Schmuki P .250 μn long anodic TiO2 nanotubes with hexagonal self-ordering[J].Physical Status Solidi,2007,1(02):65.
[25] Yang L X;Luo S L;Liu R H;Cai Q Y Xiao Y Liu S H Su F Wen L F .Fabrication of CdSe nanoparticles sensitized long TiO2 nanotube arrays for photocadtalytic degradation of anthracene9-carbonxylic acid under green monochromatic light[J].Journal of Physical Chemistry C,2010,114:4783.
[26] Pang Q;Zhao L J;Cai Y;Nguyen D P Regnault N Wang N Yang S H Ge W K Ferreira R Bastard G Wang J N .CdSe nano-tetrapods:controllable synthesis,structure analysis,and electronic and optical properties[J].Chemistry of Materials,2005,17:5263.
[27] Lee H J;Yum J H;Leventis H C;Shaik M Zakeeruddin Haque S A Chen P Seok S Gratzel M Nazeeruddin M D .CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at fullsun intensity[J].Journal of Physical Chemistry C,2008,112:11600.
[28] Park J H S;Kim;Park O O .Photoelectrochemical water splitting at titanium dioxide nanotubes coeted with tungsten trioxide[J].Applied Physics Letters,2006,89:163106.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%