欢迎登录材料期刊网

材料期刊网

高级检索

利用50 m长落管研究了SRR99镍基单晶高温合金在微重力与重力环境下的枝晶生长行为.采用金相显微镜观察了试样在微重力(微重力试样)和重力(重力试样)下凝固组织的差异,并利用图像分析软件测量了枝晶的一次臂和二次臂的长度及间距.结果表明,微重力试样在下落过程中从未熔部分外延生长的最大长度约为1.7mm,重力试样的最大长度为1.9mm.微重力试样的一次枝晶干粗大,平均间距约为80 μm,而重力试样中存在较多的细小一次枝晶干,一次臂平均间距约为71μm.一次枝晶平均间距在微重力环境下增大20%.微重力试样的二次臂长度较长,且在20~160μm的整个长度范围内较均匀分布;重力试样二次臂长度较短,且集中分布在20 ~80 μm区间内.微重力试样和重力试样的二次枝晶臂平均间距相同,均为17 μm.

参考文献

[1] 胡壮麒,刘丽荣,金涛,孙晓峰.镍基单晶高温合金的发展[J].航空发动机,2005(03):1-7.
[2] H.T. PANG;H.B. DONG;R. BEANLAND .Microstructure and Solidification Sequence of the Interdendritic Region in a Third Generation Single-Crystal Nickel-Base Superalloy[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2009(7):1660-1669.
[3] Purvis A L;Hanslits C R;Diehm R S .Modeling characteristics for solidification in single-crystal,investment-cast superalloys[J].JOM-Journal of the Minerals Metals and Materials Society,1994,46(01):38.
[4] 曹海峰,沈厚发,柳百成.镍基高温合金定向凝固斑点偏析的数值模拟研究[J].稀有金属材料与工程,2006(12):1849-1853.
[5] J. Madison;J. Spowart;D. Rowenhorst .Modeling fluid flow in three-dimensional single crystal dendritic structures[J].Acta materialia,2010(8):2864-2875.
[6] M.C.Schneider;J.P.Gu .Modeling of Micro- and Macrosegregation and Freckle Formation in Single-Crystal Nickel-Base Superalloy Directional Solidification[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1997(7):1517-1533.
[7] Li Gong,Gao Yun-Peng,Sun Yi-Nan,Chi Zhao-Hong,Liu Ri-Ping.Undercooling and solidification of Ni77P23 alloy in a 52-m drop tube[J].中国物理B(英文版),2008(09):3412-3416.
[8] LUO XingHong,CHEN Liang.Investigation of microgravity effect on solidification of medium-low-melting-point alloy by drop tube experiment[J].中国科学E辑(英文版),2008(09):1370-1379.
[9] LI Gong,SUN Liling,WANG Wenkui.Containerless solidification of Zr41Ti14Cu12.5Ni10Be22.5 glass-forming alloy in drop tube[J].科学通报(英文版),2002(20):1700-1703.
[10] Steinbach S;Ratke L .The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2007,38A(07):1388.
[11] Cahoon J R;Chaturvedi M C;Tandon K N .The unidirectional solidification of Al-4 wt pct Cu ingots in microgravity[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1998,29A(03):1101.
[12] Ananth R.;Gill WN. .DENDRITIC GROWTH IN MICROGRAVITY AND FORCED CONVECTION[J].Journal of Crystal Growth,1997(1/2):263-276.
[13] Zhixian Min;Jun Shen;Zhourong Feng;Lingshui Wang;Lei Wang;Hengzhi Fu .Effects of melt flow on the primary dendrite spacing of Pb-Sn binary alloy during directional solidification[J].Journal of Crystal Growth,2011(1):41-45.
[14] Nagai H;Rossignol F;Nakata Y;Tsurue T,Suzuki M,Okutani T .Thermal conductivity measurement of liquid materials by a hot-disk method in short-duration microgravity environments[J].Materials Science and Engineering A,2000,276(1-2):117.
[15] Langer J S;Muller K H .Theory of dendritic growth-I.Elements of a stability analysis[J].Acta Metallurgica,1978,26(11):1681.
[16] Mortensen A .On the rate of dendrite arm coarsening[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1991,22A(02):569.
[17] Ronto V;Roosz A .Investigation of secondary dendrite arm coarsening of Al-Cu-Si alloy[J].Materials Science Forum,2000,329-3:79.
[18] Giummarra C;LaCombe JC;Koss MB;Frei JE;Lupulescu AO;Glicksman ME .Sidebranch characteristics of pivalic acid dendrites grown under convection-free and diffuso-convective conditions[J].Journal of Crystal Growth,2005(1/2):317-330.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%