采用乳液、离子缔合法制备得到明胶(Gel)/β-纳米磷酸三钙(β-TCP)复合多孔微球,其尺寸可通过控制反应的搅拌速度进行调节. SEM和光学显微镜观察表明,明胶/β-TCP复合微球尺寸在20~40 μm之间,被包敷的磷酸三钙为200 nm左右,微球内部呈多孔结构. 当m(磷酸三钙)∶m(明胶)>0.4∶1时,有大量花瓣状晶体附着于复合微球的表面,是磷酸三钙溶解和明胶分子诱导重结晶所致. XRD与IR图谱表明,磷酸三钙纳米粒子与明胶之间存在化学键合,明胶/β-纳米磷酸三钙复合微球的微观结构与自然骨相似. DSC-TGA结果显示,90%的TCP在乳化过程中与明胶复合. 本文所制备的复合微球,为添加各种药物和促骨生长因子并实现缓释提供了优良的载体.
Using emulsification process and ion association method, gelatin(Gel)/β-tricalcium phosphate(β-TCP) porous composite microspheres were fabricated. The size of the composite microspheres was adjusted by controlling the rate of stirring in the reaction. From the SEM and optical microscopy images, it was found that the size of the composite microspheres arranged from 20 to 40 μm, and the TCP embedded was about 200 nm, and porous structure was formed within the microspheres. When the ratio of m(TCP)∶m(Gel) was more than 0.4∶1, large quantities of petal-like crystal were formed on the surface of the composite microspheres. It was assumed that shaped crystal was formed by TCP dissolved in the reactive solution and inductive re-crystallization by gelatin molecule. IR and XRD show that these composite microspheres contained the structure similar to the natural bone and the chemical bonds existed between the gelatin and TCP. DSC-TGA image illustrates that 90% TCP was embedded inside the gelatin spheres through the emulsion process. The prepared-composite microspheres supplied an excellent carrier for loading and releasing various pharmaceuticals and promoting bone growth factor.
参考文献
[1] | Chang M C,Ko C C,Douglas W H.Biomaterials[J],2003,24:2 853 |
[2] | LIU Wen-Bin(刘文斌),JIANG Chong-Xi(姜崇喜),SHEN Ru(沈如),FENG Bo(冯波),QU Shu-Xin(屈树新).J Func Mater(功能材料)[J],2004,35:2 370 |
[3] | Li Z,Cui K,Feng Q L.J Wuhan Univ Technol-Mater Sci Ed[J],2005,20:226 |
[4] | Liu W B,Qu S X,Shen R,Jiang C X,Li X H,Feng B,Weng J.J Mater Sci[J],2005,41(6):1 851 |
[5] | Groot K D.Biomaterials[J],1980,1:47 |
[6] | Gibson I R,Best S M,Bonfield W.J Am Ceram Soc[J],2002,85:2 771 |
[7] | Xu J L,Khor K A.J Inorg Biochem[J],2007,101:187 |
[8] | Zhang F M,Lin K L,Chang J,Lu J X,Ning C Q.J Eur Ceram Soc[J],2008,28:539 |
[9] | Hidaka S,Liu S Y.J Food Comp Anal[J],2003,16:477 |
[10] | SUN Rui-Xue(孙瑞雪),SHI Jing-Jing(史京京),GUO Yan-Chuan(郭燕川),CHEN Li-Juan(陈丽娟).Acta Polym Sin(高分子学报)[J],2008,8:779 |
[11] | Bigi A,Boanini E,Panzavolta S,Roveri N,Rubini K.J Biomed Mater Res[J],2002,59:709 |
[12] | Park Y M,Ryu S C,Yoon S Y,Stevens R,Park H C.Mater Chem Phys[J],2008,109:440 |
[13] | Eiden-Aβmann S,Viertelhaus M,Heiβ A,Hoetzer K A,Felsche J.J Inorg Biochem[J],2002,91:481 |
[14] | Montel G,Bonel G,Heughebaert J C.J Cryst Growth[J],1981,53:74 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%