欢迎登录材料期刊网

材料期刊网

高级检索

利用含时量子变换理论,给出含时双模耦合谐振子的严格解.并根据这一结果,对于给定的初态为Fock态和相干态情形,讨论了其动力学演化.

参考文献

[1] C H Bennett et al.[J].Physical Review Letters,1996,76:722.
[2] [J].Physical Review A,1996,53:2046.
[3] J W Pan;C Simon;C Brukner;A Zeilinger .[J].Nature(London),2001,410:1067.
[4] K Banaszek;K W(o)dkiewicz .[J].Acta Physica Slovaca,1999,49:491.
[5] Z B Chen;J W Pan;G Hou;Y D Zhang .[J].Physical Review Letters,2002,88:040406.
[6] P van Loock;S L Braunstein .[J].Physical Review Letters,2000,84:3482.
[7] [J].Physical Review A,1999,61:010302.
[8] D Bouwmeester;A Ekert;A Zeilinger.The Physics of Quantum Information[M].Beilin:Springer-Verlag,2000
[9] C H Bennet;H J Herbert;S Popescu;B Schumacher .[J].Physical Review A,1996,53:2046.
[10] S Popescu;D Rohrlich .[J].Physical Review A,1997,56:R3319.
[11] 陈增兵;逯怀新;吴盛俊;张永德.量子纠缠与空间非定域性[A].北京:北京大学出版社,2001
[12] S J Van Enk;J I Cirac;P Zoller .[J].Science,1998,279:205.
[13] S Lloyd .[J].Science,1993,261:1569.
[14] C H Bennett;D P DiVincenzo .[J].Nature,1995,377:389.
[15] M Kleber .[J].Physics Reports,1994,6:236.
[16] Y D Zhang;Z Tang .[J].Journal of Mathematical Physics,1993,34:5639.
[17] X B Wang;S X Yu;Y D Zhang .[J].Journal of Physics A:Mathematical and General,1994,27:6563.
[18] Y D Zhang;Z Tang .[J].Nuovo Cimento Della Societa Italiana Di Fisica B:General Physics Relativi,1994,109:387.
[19] S X Yu;Y D Zhang .[J].Communications in Theoretical Physics,1995,24:185.
[20] 张永德.量子力学[M].北京:科学出版社,2003
[21] 徐秀玮;柳盛典;任廷琦;张永德 .含时谐阵子的演化算符和波函数[J].物理学报,1999,48:1601.
[22] William H Louisell.Quantum Statistical Properties of Radiation[M].New York:wiley,1973
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%