欢迎登录材料期刊网

材料期刊网

高级检索

针对国内作为生产锯片级金刚石而普遍采用的石墨-Ni70Mn25Co5反应体系,研究了在一定的高温高压条件下金刚石的成核速率和生长速率.用石墨-金刚石转变的成核与生长动力学理论确定了在5.2GPa压力和1520K的温度下金刚石生长的活化能和表面能分别为3.77eV和0.005eV.比较表明,在石墨-Ni70Mn25Co5体系中金刚石生长的活化能和界面能的大小与国外报道的其它石墨-触媒体系的相关数据有相同的量级.进而评论了金刚石的合成机理.

参考文献

[1] Bundy F P;Hall H M;Strong H M et al.Man-made Diamond[J].NATURE,1955,176(4471):51.
[2] Sung C .Optimised Cell Design for High-pressure Synthesis of Diamond[M].High Temperature-High Pressure,2001,33:489.
[3] Sung C .A Century of Progress in the Development of Very High Pressure Apparatus for Scientific Research and Diamond Synthesis[M].High Temperature-High Pressure,1997,29:253.
[4] Bundy F P .Direct Conversion of Graphite to Diamond in Static Pressure Apparatus[J].Journal of Chemical Physics,1963,38(03):631.
[5] Bovenkerk H P;Bundy F P;Hall H T et al.Preparation of Diamond[J].Nature,1959,184(4693):1094.
[6] Vereshchagin L F;Kalashnikov Y A;Shalimov.The Mechanism of Transformation of Carbon-containing Substances to Diamond under Static Conditions[M].High Temperature-High Pressure,1975:41.
[7] Sung C .Mechanism of the Solvent-assisted Graphite to Diamond Transition under High Pressure: Implications for the Selection of Catalysts[M].High Temperature-High Pressure,1995/1996,27-28:523.
[8] 苟清泉 .高温高压下石墨变金刚石的结构转化机理[J].吉林工业大学自然科学学报,1974,2:52.
[9] 郭永存;李植华.金刚石的人工合成与应用[M].北京:科学出版社,1984
[10] Sung J .Graphite→Diamond Transition under High Pressure:a Kinetics Approach[J].Journal of Materials Science,2000,35:6041.
[11] 邓小清,唐敬友,孟川民,赵敏光.过剩压法合成金刚石的表面特征与体缺陷的形成原因分析[J].人工晶体学报,2003(05):524-527.
[12] 苟清泉 .高温高压下的石墨变金刚石的结构转化率[J].成都科技大学学报,1983,1:356.
[13] 郝兆印;陈宇飞;邹广田.人工合成金刚石[M].长春:吉林大学出版社,1996
[14] 唐敬友,谷岩,董庆东.二次暂停分段加压金刚石合成工艺探讨[J].金刚石与磨料磨具工程,2000(06):4-5.
[15] 唐敬友,董庆东,谷岩.金刚石膜生长法中石墨的纳米微团运动模型初探[J].金刚石与磨料磨具工程,2000(03):24-27.
[16] 张书达.静压触媒法生长金刚石的机理[J].珠宝科技,2002(03):8-12.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%