针对国内作为生产锯片级金刚石而普遍采用的石墨-Ni70Mn25Co5反应体系,研究了在一定的高温高压条件下金刚石的成核速率和生长速率.用石墨-金刚石转变的成核与生长动力学理论确定了在5.2GPa压力和1520K的温度下金刚石生长的活化能和表面能分别为3.77eV和0.005eV.比较表明,在石墨-Ni70Mn25Co5体系中金刚石生长的活化能和界面能的大小与国外报道的其它石墨-触媒体系的相关数据有相同的量级.进而评论了金刚石的合成机理.
参考文献
[1] | Bundy F P;Hall H M;Strong H M et al.Man-made Diamond[J].NATURE,1955,176(4471):51. |
[2] | Sung C .Optimised Cell Design for High-pressure Synthesis of Diamond[M].High Temperature-High Pressure,2001,33:489. |
[3] | Sung C .A Century of Progress in the Development of Very High Pressure Apparatus for Scientific Research and Diamond Synthesis[M].High Temperature-High Pressure,1997,29:253. |
[4] | Bundy F P .Direct Conversion of Graphite to Diamond in Static Pressure Apparatus[J].Journal of Chemical Physics,1963,38(03):631. |
[5] | Bovenkerk H P;Bundy F P;Hall H T et al.Preparation of Diamond[J].Nature,1959,184(4693):1094. |
[6] | Vereshchagin L F;Kalashnikov Y A;Shalimov.The Mechanism of Transformation of Carbon-containing Substances to Diamond under Static Conditions[M].High Temperature-High Pressure,1975:41. |
[7] | Sung C .Mechanism of the Solvent-assisted Graphite to Diamond Transition under High Pressure: Implications for the Selection of Catalysts[M].High Temperature-High Pressure,1995/1996,27-28:523. |
[8] | 苟清泉 .高温高压下石墨变金刚石的结构转化机理[J].吉林工业大学自然科学学报,1974,2:52. |
[9] | 郭永存;李植华.金刚石的人工合成与应用[M].北京:科学出版社,1984 |
[10] | Sung J .Graphite→Diamond Transition under High Pressure:a Kinetics Approach[J].Journal of Materials Science,2000,35:6041. |
[11] | 邓小清,唐敬友,孟川民,赵敏光.过剩压法合成金刚石的表面特征与体缺陷的形成原因分析[J].人工晶体学报,2003(05):524-527. |
[12] | 苟清泉 .高温高压下的石墨变金刚石的结构转化率[J].成都科技大学学报,1983,1:356. |
[13] | 郝兆印;陈宇飞;邹广田.人工合成金刚石[M].长春:吉林大学出版社,1996 |
[14] | 唐敬友,谷岩,董庆东.二次暂停分段加压金刚石合成工艺探讨[J].金刚石与磨料磨具工程,2000(06):4-5. |
[15] | 唐敬友,董庆东,谷岩.金刚石膜生长法中石墨的纳米微团运动模型初探[J].金刚石与磨料磨具工程,2000(03):24-27. |
[16] | 张书达.静压触媒法生长金刚石的机理[J].珠宝科技,2002(03):8-12. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%