欢迎登录材料期刊网

材料期刊网

高级检索

在考虑微小磁相互作用(包括SS、SOO和OO作用)的基础上,采用全组态完全对角化方法,建立了Al2O3晶体中V2+离子的局域结构与自旋哈密顿参量定量关系,对Al2O3:V2+晶体基态和激发态零场分裂以及基态g因子等自旋哈密顿(SH)参量给出了统一的解释.结果表明,V2+离子进入Al2O3晶体后,上下配体氧平面分别沿C3轴向远离三角中心的方向移动了0.0021nm和0.0020nm.理论计算结果与实验值符合甚好.

参考文献

[1] Yang ZY;Hao Y;Rudowicz C;Yeung YY .Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin-spin and spin-other-orbit interactions for Ni2+ (3d(8)) ions in trigonal crystal fields[J].Journal of Physics. Condensed Matter,2004(20):3481-3494.
[2] Macfarlane R M .Zero Field Splitting of t32 Cubic Terms[J].Journal of Chemical Physics,1967,47:2066.
[3] Macfarlane R M .Perturbation Methods in the Calculation of Zeeman Interactions and Magnetic Dipole Line Strengths for d3 Trigonal-crystal Spectra[J].Physical Review B,1970,1:989.
[4] Petrosyan A K;Mirzakhanyan A A .Zero Field Splitting and g-values of d8 Ions in a Trigonal Crystal Field[J].Physica Status Solidi B,1986,133:315.
[5] Ma DP.;Chen JR.;Liu YY.;Ma XD. .PRESSURE-INDUCED SHIFTS OF ENERGY LEVELS OF ALPHA-AL2O3-V3+ AND A COMPLETE LIGAND-FIELD CALCULATION[J].Physical Review.B.Condensed Matter,1997(4):1780-1786.
[6] 杨子元,魏群.三角对称晶场中 4 A2(3d3 )态离子EPR参量的SS和SOO机制[J].化学物理学报,2004(04):401-406.
[7] Sharma R R;Das T P;Orbach R .Zero-field Splitting of S-state Ions I Point-multipole Model[J].Physical Review,1966,149:257.
[8] Sharma R R;Das T P;Orbach R .Zero-field Splitting of S-state Ions III Corrections to Part I and II Application to Distorted Cubic Crystals[J].Physical Review,1968,171:378.
[9] Sharma R R .Spin-lattice Coupling Constants of an Fe3+ Ion in MgO[J].Physical Review,1968,176:467.
[10] Yu W L;Zhao M G;Lin Z Q .High Order Perturbation Formulae for the Zero Field Splitting of a 6S ion in C3 Symmetry and Its Applications to Mn(I):Ca5(PO4)3F[J].Journal of Physics C:Solid State Physics,1985,18:1857.
[11] Zhou Y Y;Lin C L .Spin Triplet Contribution to Zero Field Splitting for 3d4 and 3d6 Ions at Tetragonal Sites[J].Physical Review B,1993,48(22):16489.
[12] Zhou Y Y .Zero Field Splitting Parameters of Cr2+ Ion in GaAs[J].Physical Review B,1995,51:14176.
[13] Rudowicz C.;Yang ZY.;Yeung YY.;Qin J. .Crystal field and microscopic spin Hamiltonians approach including spin-spin and spin-other-orbit interactions for d(2) and d(8) ions at low symmetry C-3 symmetry sites: V3+ in Al2O3[J].The journal of physics and chemistry of solids,2003(8):1419-1428.
[14] Fairbank W M;Llauminger G K;Schawlow A L .Excited-state Absorption in Ruby,Emerald and MgO:Cr3+[J].Physical Review B,1975,11:60.
[15] Wei, L;Kuang, XY;Zhou, KW;Dong, D .EPR theoretical study of local lattice structure in Al2O3 : Fe3+ system[J].The journal of physics and chemistry of solids,2004(6):1147-1151.
[16] McClure D S .Comparison of the Crystal Fields and Optical Spectra of Cr2O3 and Ruby[J].Journal of Chemical Physics,1963,38:2289.
[17] Feher E;Struve M D .Effect of Stress on the Trigonal Splitting of d3 Ions in Sapphire[J].Physical Review,1968,172:244.
[18] Imbusch G F;Chinn S R;Geschwind S .Optical Detection of Spin-lattice Relaxation and Hfs in the Excited 2E State of V2+ and Mn4+ in Al2O3[J].Physical Review,1967,161:295.
[19] Sturge M D .Optical Spectrum of Divalent Vanadium in Octahedral Coordination[J].Physical Review,1963,130:639.
[20] 郑文琛,邬劭轶.V2+离子在刚玉中的位置的研究[J].矿物学报,1995(03):324-327.
[21] Hao Yue;Yang Zi-Yuan .Magnetic Interactions and microscopic spin Hamiltonian approaches for 3d~3 ions at trigonal symmetry sites[J].Journal of Magnetism and Magnetic Materials,2006(2):445-458.
[22] Marven H H .Mutual Magnetic Interactions of Electrons[J].Physical Review,1947,71:102.
[23] Pasternak A;Goldschmidt Z B .Spin Dependent Interactions in the 3dN Configurations of the Third Spectra of the Iron Group[J].Physical Review A,1972,6:55.
[24] 杨子元.LiTaO3:Cr3+晶体中Cr3+离子占位及其EPR参量的理论研究[J].人工晶体学报,1998(04):315-320.
[25] Newman D J;Betty N .Superposition Model of Crystal Fields[J].Reports on Progress in Physics,1989,52:699.
[26] 杨子元,王俊忠,段绪朝.掺杂晶体Cr3+∶MgAl2O4晶格畸变及基态自旋哈密顿参量的理论研究[J].人工晶体学报,1999(03):239-243.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%