陶瓷材料与金属材料相比,具有良好的热机性能、低密度和优良的耐腐蚀性,已经被用做刀具、耐磨件和结构部件.然而,陶瓷固有的脆性限制了其作为高载荷部件方面的应用.本文综述了通过提高韧性改善结构陶瓷可靠性的各种方法,并对今后的发展前景进行了展望.
参考文献
[1] | Ruf H;Evans A G .Toughening by monoclinic zirconia[J].Journal of the American Ceramic Society,1983,66(05):328-332. |
[2] | Evans A G;Heuer A H .Review-transformation toughening in ceramics:martensitic transformations in crack-tip stress fields[J].Journal of the American Ceramic Society,1980,63(5-6):241-248. |
[3] | Evans A G;Burlingame N H;Kriven W M et al.Martensitic transformations in zirconia particle size effects and toughening[J].Acta Materialia,1981,29:447-156. |
[4] | Swain M V;Rose L R F .Strength limitations of transformation-toughened zirconia alloy[J].Journal of the American Ceramic Society,1986,66(07):511-518. |
[5] | Dauskhardt R;Veirs D K;Ritchic R O .Spatially resolved raman spectroscopy study of transformed zones in magnesia-partially-stabilized zirconia[J].Journal of the American Ceramic Society,1989,72(07):1124-1130. |
[6] | Chen I-W;Reyes-Morel P E .Implications of transformation plasticity in ZrO2-containing ceramic:I.shear and diatation effects[J].Journal of the American Ceramic Society,1986,69(03):181-189. |
[7] | ROSE L R F .Kinematical model for stress-induced transformation around cracks[J].Journal of the American Ceramic Society,1986,69(03):208-212. |
[8] | Ruhle M;Claussen N;Heuer A H .Transformation and microcrack toughening as complementary processes in ZrO2-toughened Al2O3[J].Journal of the American Ceramic Society,1986,69(03):195-197. |
[9] | Ruhle M;Evans A G;McMeeking R M et al.Microcrack toughening in alumina/zirconia[J].Acta Materialia,1987,35(11):2701-2710. |
[10] | Evans A G;Faber K T .Crack-growth resistance of microcracking brittle materials[J].Journal of the American Ceramic Society,1984,67(04):255-260. |
[11] | Hutchinson J W .Crack tip shielding by microcracking in brittle solids[J].Acta Materialia,1987,35(07):1605-1619. |
[12] | Evans A G;Cannon R M .Toughening of brittle solids by martemsitic transformations[J].Acta Materialia,1986,34(05):761-800. |
[13] | Faber K T;Evans A G .Crack deflection processes:I.theory[J].Acta Materialia,1983,31(04):565-576. |
[14] | CLAUSSEN N;Ruhle M.[A].Advances in Ceramics.Vol.3.Science and Technology of Zirconia I.Columbus.Ohio:The American Ceramics Society,1981 |
[15] | Lange F F .Compressive surface stresses developed in ceramics by an oxidation-induced phase change[J].Journal of the American Ceramic Society,1980,63(01):38-40. |
[16] | GREEN D J;Maloney B R .Influence of surface stress on indentation crack[J].Journal of the American Ceramic Society,1986,69(03):223-232. |
[17] | GREEN D J;Lange F F;James M R .Factors influencing residual surface stresses due to a stress-induce phase transformation[J].Journal of the American Ceramic Society,1983,66(09):623-629. |
[18] | Cao H C;Dalgleish B J;Deve H E et al.A test procedure for characterizing the toughening of brittle intermetallics by ductile reinforcement[J].Acta Materialia,1989,37(11):2969-2977. |
[19] | Flinn B;Ruhle M;Evans A G .Toughening in composites of Al2O3 reinforced with Al[J].Acta Materialia,1989,37(11):3001-3002. |
[20] | Sigl L S;Exner E .Experimental study of the mechanics of fracture in WC-Coalloys[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1987,18:1299-1308. |
[21] | Marshall D B;Cox B N;Evans A G .The mechanics of matrix cracking in brittle-matrix fiber composites[J].Acta Materialia,1985,33:2013-2021. |
[22] | Charalambides P G;Evans A G .Debonding properties of residually stressed brittle-matrix composites[J].Journal of the American Ceramic Society,1989,72(05):746-753. |
[23] | Thouless M D;Evans A G .Effect of pullout on the mechanical properties of brittle matrix composites[J].Acta Materialia,1988,36(03):517-522. |
[24] | Prewo K M;Brennan J J .Silicon carbide-fiber-reinforced glass-ceramic-matrix composites,exhibiting high strength and toughness[J].Journal of Materials Science,1982,17(04):1201-1206. |
[25] | Pyzik A;Beamen D R .Microstructure and properties of self-reinforced silicon nitride[J].Journal of the American Ceramic Society,1993,76(11):2737-2744. |
[26] | Sajgalik P;Dusza J;Hoffmann M J .Relationship between microstructure,toughening mechanisms and fracture toughness of reinforced silicon nitride ceramics[J].Journal of the American Ceramic Society,1995,78(10):2619-2624. |
[27] | Peterson I M;Tien T Y .Effect of the grain boundary thermal expansion coefficient on the fracture toughness in silicon nitride[J].Journal of the American Ceramic Society,1995,78(09):2345-2352. |
[28] | Choi S R;Salem J A;Sanders W A .Estimation of crack closure stresses in in-situ toughened slilcon nitride with 8wt% scandia[J].Journal of the American Ceramic Society,1992,75(06):1508-1511. |
[29] | Nishida T;Hanaki Y;Pezzotti G .Effect of notch-root radius on the fracture toughness of a fine-grained alumina[J].Journal of the American Ceramic Society,1996,77(02):606-608. |
[30] | PEZZOTTI G;Muraki N;Maeda N et al.In-situ measurement of bridging stresses in silicon nitride using Raman microprobe spectroscopy[J].Journal of the American Ceramic Society,1999,82(05):1249-1256. |
[31] | Mareder J M;Mitchell T E;Heuer A H .Precipitation from cubic ZrO2 solid solution[J].Acta Materialia,1983,31(03):387-395. |
[32] | Swain M V;Heim W.Structure and properties of ceramics[M].New York Academicpress,New York:Academic Press,1994 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%