硅酸盐通报 , 2007, 26(3): 598-601. doi: 10.3969/j.issn.1001-1625.2007.03.038
隧道窑冷却带喷嘴喷射速度对窑内气体流动的影响
艾明香 1, , 王世峰 2, , 刘光霞 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"综述了Mg-Li超轻合金的合金系研究、制备新技术及其在结构材料和功能材料领域的研究和应用,指出了存在的问题,并展望了Mg-Li超轻合金的发展前景.","authors":[{"authorName":"蒋斌","id":"0c01ecd1-4939-497f-bd3b-98fbdfcd6f71","originalAuthorName":"蒋斌"},{"authorName":"张丁非","id":"37cd7307-5db1-4668-b11b-96e745d834f0","originalAuthorName":"张丁非"},{"authorName":"彭建","id":"c2a6a76b-aeb3-4dc6-8b05-6f4b185c4174","originalAuthorName":"彭建"},{"authorName":"丁培道","id":"e14163c0-be34-4db8-929f-45f8530bc437","originalAuthorName":"丁培道"}],"doi":"","fpage":"38","id":"997d5b27-8396-4b77-aaf3-7b10e633741f","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ed647c03-808e-4541-a30f-f71b9550a2d6","keyword":"Mg-Li超轻合金","originalKeyword":"Mg-Li超轻合金"},{"id":"dd2f2bde-9f7b-4f00-ab65-a1c1c1d0cffe","keyword":"合金系","originalKeyword":"合金系"},{"id":"9024594d-ec9d-4fcf-b8a6-893e7ac55d4d","keyword":"新技术","originalKeyword":"新技术"},{"id":"1c35da04-65e6-4e74-b61f-a09fb0686601","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb200505012","title":"Mg-Li超轻合金的研究与应用","volume":"19","year":"2005"},{"abstractinfo":"分析超轻Mg-Li合金的特点和存在的主要技术问题及近年来的研究进展,综述超轻Mg-Li合金的强化方法及特点.介绍合金化、细晶强化及复合强化等强化方式在Mg-Li合金研究中的应用及达到的强化效果.提出超轻镁锂合金今后的研究热点,展望今后的发展趋势.","authors":[{"authorName":"徐春杰","id":"ad1e3508-97cb-40a4-a1be-db5e5f019f52","originalAuthorName":"徐春杰"},{"authorName":"马涛","id":"6c00db93-1958-4082-99c7-69152ca888df","originalAuthorName":"马涛"},{"authorName":"屠涛","id":"33159594-cfa5-42aa-896b-b215afff5e21","originalAuthorName":"屠涛"},{"authorName":"张忠明","id":"c092e220-a6da-4670-904f-2085e6deb894","originalAuthorName":"张忠明"},{"authorName":"王锦程","id":"c56a94da-c543-4701-b077-b267ad114a69","originalAuthorName":"王锦程"}],"doi":"33-1331/TJ.20120229.1646.003","fpage":"97","id":"246a4882-7649-4f40-a3c8-5da4f5e5f092","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"276f1060-7e35-4d49-bb75-895e3addc8f7","keyword":"Mg-Li合金","originalKeyword":"Mg-Li合金"},{"id":"08328f7d-fc77-4cb8-b42a-8d6877dad5c2","keyword":"合金化","originalKeyword":"合金化"},{"id":"9a4d2801-6297-469a-957a-73a236bb0e34","keyword":"细晶强化","originalKeyword":"细晶强化"},{"id":"5c25a2fa-b35c-4756-abe0-cec984566aa4","keyword":"复合强化","originalKeyword":"复合强化"}],"language":"zh","publisherId":"bqclkxygc201202030","title":"超轻Mg-Li合金强化方法研究现状及其应用","volume":"35","year":"2012"},{"abstractinfo":"研究了采用冷轧复合法制备Mg-Li合金复铝板的工艺,得到了适宜的轧制制度与退火热处理参数,结果表明轧制压下率在60%~65%时复合效果最佳.退火时Mg-Li合金内的α相发生了明显的球化转变,300℃退火1 h后Mg-Li合金的再结晶过程基本完成.Mg-Li合金复铝板的密度为1.6~1.7 g/cm3,具有显著的轻质特点、而耐蚀性较单一Mg-Li合金显著提高.","authors":[{"authorName":"祖国胤","id":"35440cfc-2a81-439e-b199-30781e783a75","originalAuthorName":"祖国胤"},{"authorName":"姚广春","id":"d5c68b2b-fc1a-4b76-9013-e65d991a3fbb","originalAuthorName":"姚广春"},{"authorName":"李红斌","id":"f6ca0915-75f8-418a-8577-51d355baabbf","originalAuthorName":"李红斌"}],"doi":"","fpage":"161","id":"f9f148a0-a7e5-471c-acbe-f5e48b176e9e","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"c4c9eb04-c6ca-40cc-8e3a-e02774e77a87","keyword":"Mg-Li合金复铝板","originalKeyword":"Mg-Li合金复铝板"},{"id":"fb6d2889-6a6c-4589-a696-6bda28968348","keyword":"冷轧复合","originalKeyword":"冷轧复合"},{"id":"9f07f05a-5079-4c4c-ab5e-73615e48d181","keyword":"退火","originalKeyword":"退火"},{"id":"3e56f742-a5e5-4240-9389-ad193fe48822","keyword":"密度","originalKeyword":"密度"}],"language":"zh","publisherId":"gncl200701048","title":"冷轧复合工艺制备超轻Mg-Li合金复铝板","volume":"38","year":"2007"},{"abstractinfo":"对真空硅热法制备Mg-Li合金进行实验研究,采用X射线衍射仪对产物和残渣进行物相分析,利用扫描电子显微镜观察产物的冷凝形貌.XRD分析表明,产物的主要成分为Mg,反应的主渣相为Ca2SiO4.SEM分析表明,产物微观上相继呈片状、短棒状和絮状.同时研究了在未添加萤石时硅铁添加量、还原温度、成型压力和保温时间对Mg-Li合金制备的影响.在还原温度1250℃、硅铁添加量110%、成型压力15 MPa和保温时间150 min的条件下,镁锂还原率分别为81.38%和99.58%.","authors":[{"authorName":"郑笑芳","id":"e68b409e-f580-42de-9748-bb4e177914b0","originalAuthorName":"郑笑芳"},{"authorName":"彭晓东","id":"28c5981d-9d0b-491c-ac79-7efcf7be8a66","originalAuthorName":"彭晓东"},{"authorName":"李俊辰","id":"27f0c435-2404-4a69-8911-fc15a39d7eff","originalAuthorName":"李俊辰"},{"authorName":"魏群义","id":"2abe42f3-0ea9-4620-bfe0-8f21f95ba3b6","originalAuthorName":"魏群义"}],"doi":"","fpage":"2079","id":"fed3cc32-eac1-4379-8a53-f6a337750ce9","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"481edea3-97df-41eb-a912-3ee5b11fe667","keyword":"硅热法","originalKeyword":"硅热法"},{"id":"4310b1ca-d375-4591-8e8e-e5fa603827c0","keyword":"镁锂合金","originalKeyword":"镁锂合金"},{"id":"73b1d628-86b9-44c1-b3e5-1e70d8b73328","keyword":"真空","originalKeyword":"真空"}],"language":"zh","publisherId":"xyjsclygc201409007","title":"真空硅热法制备Mg-Li合金","volume":"43","year":"2014"},{"abstractinfo":"利用Hopkinson压杆实验装置对二种单相Mg-Li合金的三点弯曲试样进行了冲击实验,分析了不同结构Mg-Li合金的动态裂纹扩展特性及其微观断裂机制.结果表明:在高速冲击条件下,单相Mg-Li合金的裂纹扩展主要是减速过程,且随Li含量增加,由于合金组织结构的转变(hcp→bcc),加之合金中Al的添加而沉淀的MgLi2Al与AlLi粒子的作用,致使Mg-Li合金的裂纹扩展速度显著降低.其中,Mg-3.3Li合金的最大裂纹扩展速度达1253.37 m/s,而Mg-14Li合金的最大裂纹扩展速度为935.56 m/s.此外,在高速冲击条件下,Mg-3.3Li合金产生沿晶脆性断裂,而Mg-14Li合金主要为延性断裂.","authors":[{"authorName":"沙桂英","id":"a747b517-fcd8-4bcc-bdc2-8263bd7f70f9","originalAuthorName":"沙桂英"},{"authorName":"徐永波","id":"43896496-7fdc-472f-b50e-f0ef92d596de","originalAuthorName":"徐永波"},{"authorName":"韩恩厚","id":"e24d5ee9-9e2f-484c-a0bd-7fa1085a05ba","originalAuthorName":"韩恩厚"},{"authorName":"于涛","id":"535ca1f1-3d80-45e4-b4dd-ca78180dd657","originalAuthorName":"于涛"},{"authorName":"刘路","id":"28e86738-e4ab-4a9c-a190-4c3c97018038","originalAuthorName":"刘路"},{"authorName":"高国忠","id":"6976dff2-15bc-476f-a16c-fb2f1ba3c75e","originalAuthorName":"高国忠"}],"doi":"10.3969/j.issn.1005-5053.2005.05.011","fpage":"50","id":"4bc12ab2-f702-44db-9fa6-29c08f05e8d4","issue":"5","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"67ee88df-8569-447c-b060-543a567b59bf","keyword":"Mg-Li合金","originalKeyword":"Mg-Li合金"},{"id":"29409cbb-768c-4fbe-9676-9484053de770","keyword":"加载速率","originalKeyword":"加载速率"},{"id":"e350f6bb-a4fa-4238-b7e5-8fcdb7fc6717","keyword":"裂纹扩展速度","originalKeyword":"裂纹扩展速度"},{"id":"bceb9cf9-119f-4b6c-aed7-fb90358b95ab","keyword":"断裂机制","originalKeyword":"断裂机制"}],"language":"zh","publisherId":"hkclxb200505011","title":"高速冲击载荷下Mg-Li合金的动态裂纹扩展行为","volume":"25","year":"2005"},{"abstractinfo":"采用分离式霍普金森压杆(SHPB)对真空熔炼制备的Mg-Li合金进行了静、动态试验研究,试件的加载应变率范围为1.7×10-3~1026 s-1,得到了材料在不同应变率下的应力-应变曲线.并根据实验结果确立了Mg-Li合金在一维应力高应变率冲击状态下的本构关系.同时还分析了不同应变率冲击后Mg-Li合金的金相组织.结果表明,该Mg-Li 合金在室温下的动态冲击性能对应变率不敏感.Mg-Li合金在一维应力高应变率冲击状态下的本构关系为σ=1.5ε,(σ<0.12 GPa),σ=0.12+2.7ε1.2(σ≥0.12 GPa).随着应变率的增加,晶粒尺寸先变小,再趋于不规则形状,而且晶界处分布的短条状化合物也逐渐集中.","authors":[{"authorName":"邹广平","id":"ecd673e8-dd41-4aa8-8a91-ef2cd8a6aefb","originalAuthorName":"邹广平"},{"authorName":"唱忠良","id":"165d1f4e-eb19-466b-8e76-80cc7de4f2e1","originalAuthorName":"唱忠良"},{"authorName":"陈思","id":"4e833bde-6435-4e16-a775-092ac0a33c72","originalAuthorName":"陈思"},{"authorName":"王瑞瑞","id":"1605a49d-29fa-47a1-b7f9-0351bbb21fc6","originalAuthorName":"王瑞瑞"},{"authorName":"张密林","id":"6613d432-c327-4e17-aa47-9cfa3f2a4307","originalAuthorName":"张密林"}],"doi":"","fpage":"514","id":"c2982c74-b950-4a16-9c4e-f1ece3f37b2b","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"45d08d20-c777-4b3c-8eec-38dc8f582293","keyword":"Mg-Li合金","originalKeyword":"Mg-Li合金"},{"id":"be5f6559-2772-43c3-b0d6-1e07af58de1d","keyword":"高应变率","originalKeyword":"高应变率"},{"id":"74a187dd-d767-498a-9956-e57236ee0f3c","keyword":"本构关系","originalKeyword":"本构关系"},{"id":"961ad7a9-998f-4138-ba8d-240dc4ce5a74","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"xyjsclygc201203029","title":"冲击载荷作用下Mg-Li合金的力学性能及显微组织","volume":"41","year":"2012"},{"abstractinfo":"在简要回顾Mg-Li合金的历史的基础上对该合金的最新进展情况予以全面总结,包括新合金体系的开发、半固态成形技术、快速凝固技术、复合材料的开发以及超塑成形技术等.介绍了该系合金的应用情况,指出了目前存在的问题,指明了下一步工作的方向,并展望了Mg-Li合金的发展前景.","authors":[{"authorName":"乐启炽","id":"d6fe8b9c-dbff-424a-99fb-90f7b21149a1","originalAuthorName":"乐启炽"},{"authorName":"崔建忠","id":"d71f20a1-f5c0-4a44-8a2d-3ff6826fd6e2","originalAuthorName":"崔建忠"},{"authorName":"李红斌","id":"e12843a9-9738-4f79-ba95-a0675f0b2662","originalAuthorName":"李红斌"},{"authorName":"张新建","id":"27b6e4cb-e9cf-49be-892b-ed19660c9f5c","originalAuthorName":"张新建"}],"doi":"","fpage":"1","id":"3c653620-45eb-4b3a-9623-79dcc7166251","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e3e67cdd-776d-4994-8285-dc82b506ad98","keyword":"Mg-Li合金","originalKeyword":"Mg-Li合金"},{"id":"bb4c967e-0b22-4286-968b-48d7db244f3b","keyword":"快速凝固","originalKeyword":"快速凝固"},{"id":"a05f05d0-ed0c-4230-a25b-dba6beeaef68","keyword":"超塑性","originalKeyword":"超塑性"},{"id":"4e291100-768f-4b92-94e2-59452c8dcd06","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"53908f1c-ec21-4e56-ae24-5d7c08d19810","keyword":"半固态成形","originalKeyword":"半固态成形"}],"language":"zh","publisherId":"cldb200312001","title":"Mg-Li合金研究最新进展及其应用","volume":"17","year":"2003"},{"abstractinfo":"提出了真空碳热还原制备Mg-Li合金的新思路,并对还原反应进行了热力学分析,研究了还原反应的反应式、吉布斯自由能及临界还原温度.结果表明:真空碳热还原制备Mg-Li合金具备热力学可行性,且其吉布斯自由能随真空度和反应温度的升高而降低;相同真空度下,该反应的临界反应温度低于真空碳热还原制备金属Mg、金属Li的临界温度,反应更容易进行;当真空度为10 Pa,Li2O的相对比例为0.1时,真空碳热还原制备Mg-Li合金的临界反应温度为1345 K;在常规皮江法(真空硅热还原法)制镁的反应条件下,不论反应物料中MgO、Li2O相对比例为多少,真空碳热还原制备Mg-Li合金均具有热力学可行性.","authors":[{"authorName":"张玺","id":"8ea01504-d252-4e50-88a6-4c9857ffedc4","originalAuthorName":"张玺"},{"authorName":"张南夷","id":"9b1bfb50-dc72-4976-b398-a3c89aee15b3","originalAuthorName":"张南夷"},{"authorName":"张劲松","id":"31dbfd9a-82a9-48d8-96f3-a531ac56a6b9","originalAuthorName":"张劲松"},{"authorName":"黄鹏","id":"fe1c1898-c2af-42f6-bac0-fc44cf92d4fc","originalAuthorName":"黄鹏"},{"authorName":"彭晓东","id":"90886242-fc0a-41ae-a657-ef7a093de5bc","originalAuthorName":"彭晓东"},{"authorName":"谢卫东","id":"7e32b091-976b-46a4-97e8-81e59c605830","originalAuthorName":"谢卫东"}],"doi":"","fpage":"127","id":"df48c8bb-7d71-40be-8cc1-335b3574ca04","issue":"1","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"aabfa136-498b-4139-8e67-e660ac264ea9","keyword":"Mg-Li合金","originalKeyword":"Mg-Li合金"},{"id":"693ccd6e-9a0f-4368-b13d-23aa09f8c998","keyword":"真空碳还原","originalKeyword":"真空碳还原"},{"id":"de64695e-c856-488e-8858-a4d810cee7bf","keyword":"热力学分析","originalKeyword":"热力学分析"}],"language":"zh","publisherId":"xyjsclygc201601026","title":"真空碳热还原制备Mg-Li合金热力学分析","volume":"45","year":"2016"},{"abstractinfo":"Mg-Li基复合材料具有很高的比强度和比刚度,是宇航、兵器等行业的理想结构材料之一. 综述了Mg-Li基复合材料常用的基体合金和增强体,介绍了真空(保护气氛)浸渗、粉末冶金、薄膜冶金以及搅拌铸造等几种常用制备方法,并比较了这几种制备方法的优缺点以及适用增强体,还综述了几种常见Mg-Li基复合材料的组织与性能. 对目前存在的问题进行了探讨,指出现有Mg-Li基复合材料制备方法均采用外加增强体的办法引入强化相,其存在较严重界面反应的缺点,原位自生反应合成增强体是一条可行的途径;此外,采用变形加工或后续热处理也是提高Mg-Li基复合材料力学性能的有效方法. ","authors":[{"authorName":"王辅忠","id":"574b7c72-3bc2-4b4a-b127-b4dab03130b7","originalAuthorName":"王辅忠"},{"authorName":"李荣华","id":"66ca8bfb-55df-42f4-9465-e3eb4b123854","originalAuthorName":"李荣华"}],"doi":"10.3969/j.issn.0258-7076.2003.02.014","fpage":"273","id":"a75d042a-112e-4bbf-8f63-f90e9d360200","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"1a7a25cf-6528-4cc7-9d29-4973e0974448","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"ccf82696-0585-4a51-ac84-b56aaf89abb7","keyword":"Mg-Li","originalKeyword":"Mg-Li"},{"id":"116928a0-4918-4993-ba61-4112a4744925","keyword":"制备","originalKeyword":"制备"},{"id":"ea0d3ef4-74b9-4f82-baa3-37d0dbd0d9f0","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"xyjs200302014","title":"Mg-Li基复合材料研究","volume":"27","year":"2003"},{"abstractinfo":"采用光学显微镜,SEM扫描电镜,XRD以及力学性能测试等手段,对比研究了Mg-7Li-3Zn,Mg-7Li-3A1和Mg-7Li-1.5Al-1.5Zn的合金组织,力学性能以及断裂机制.结果表明:Zn和Al主要以固溶形式存在于Mg-Li合金中,但仍有少量Al与Mg会形成中间相以颗粒状弥散分布在α-Mg的晶界处和-Li的基体中.三类合金经过挤压变形后,组织得到细化,回复再结晶现象明显,力学性能发生明显改善.其中Mg-7Li-3Al的抗拉强度和最大延伸率达到最高,分别为239 MPa和27%,比铸态下分别提高34%和93%.","authors":[{"authorName":"许天才","id":"0c7f9959-1021-40ea-9fd0-fedf4858b6fd","originalAuthorName":"许天才"},{"authorName":"彭晓东","id":"e5478917-755f-4148-a1c2-d8dc51e71523","originalAuthorName":"彭晓东"},{"authorName":"姜军伟","id":"aa79c406-9c61-4fe1-aeb7-a216d1b2f826","originalAuthorName":"姜军伟"},{"authorName":"魏国兵","id":"75d9974a-389d-48a6-aada-1b35f6f4189c","originalAuthorName":"魏国兵"},{"authorName":"张宝","id":"3b7901c5-cfb6-46de-ba6a-395feee7d2e0","originalAuthorName":"张宝"}],"doi":"","fpage":"1815","id":"b269d25a-fc33-47f7-bb05-1088ceff92b9","issue":"8","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"be1229a2-b080-41b4-a59d-57cb0d3f952a","keyword":"镁锂合金","originalKeyword":"镁锂合金"},{"id":"ce0b7638-2339-49c8-bd84-fcdcf1ef799e","keyword":"挤压","originalKeyword":"挤压"},{"id":"f04e5410-f21c-4423-b547-b8b158ee6474","keyword":"组织","originalKeyword":"组织"},{"id":"2ff39701-4ebe-4f6c-b85e-8a30c74647d5","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"xyjsclygc201408005","title":"超轻Mg-Li-Al-Zn变型合金的组织及力学性能","volume":"43","year":"2014"}],"totalpage":4738,"totalrecord":47371}