欢迎登录材料期刊网

材料期刊网

高级检索

采用流变学的方法研究了固相体积分数为35%的4类 SiO2微粉悬浮液的流变性能,从粒度特征的角度,探讨了在不添加减水剂、添加六偏磷酸钠、三聚磷酸钠及高效减水剂 FS20的条件下,悬浮液表现出不同的流变行为机制。结果表明:在不添加减水剂时,粉体中含有中位径小的细颗粒比例越高,悬浮液黏度越大,而含有较多粗颗粒的 SiO2微粉悬浮液出现了剪切稠化行为;添加减水剂后,悬浮液流变行为与 SiO2微粉的比表面积大小及粒度分布密切相关,均表现为假塑性流体特征。FS20对 SiO2微粉的分散效果明显优于六偏磷酸钠和三聚磷酸钠的,这主要是由于后者的分散机制为静电排斥作用,而 FS20除了上述分散稳定机制外,还可产生很强的空间位阻效应。

The rheological properties of four silica fume slurries with 35% solid volume fraction were investi-gated by rheological method.The silica fume slurries without and with the dispersants of sodium hexameta-phosphate,sodium tripolyphosphate or FS20 were prepared,and the mechanism of different rheological behaviors was analyzed from the view of granulometric characteristics.The results show that,as the fraction of fine particles charactered by small middle particle size in the silica fume increases,the viscosity of slurry without dispersants becomes higher,and the slurries made from more coarse particles exhibit shear-thick-ening behavior.When further adding the dispersants,the rheological behavior of the slurries is closely relat-ed to the specific surface area and particle size distribution of silica fume,and all the slurries behave as pseudoplastic liquid.Compared with the dispersants of sodium hexametaphosphate and sodium tri-polyphosphate,FS20 has better dispersion effect upon silica fume.The reason is mainly FS20 has a strong space steric hindrance besides the electrostatic repulsion effect possessed by sodium hexametaphoshpate and sodium tripolyphosphate.

参考文献

[1] R.D. dos Anjos;M.R. Ismael;I.R. de Oliveira.Workability and setting parameters evaluation of colloidal silica bonded refractory suspensions[J].CERAMICS INTERNATIONAL,20081(1):165-171.
[2] G.D. Ransinchung;Brind Kumar;Veerendra Kumar.Assessment Of Water Absorption And Chloride Ion Penetration Of Pavement Quality Concrete Admixed With Wollastonite And Microsilica[J].Construction and Building Materials,20092(2):1168-1177.
[3] E.Y. Sako;M.A.L. Braulio;V.C. Pandolfelli.The corrosion resistance of microsilica-containing Al_2O_3-MgO and Al_2O_3-spinel castables[J].CERAMICS INTERNATIONAL,20126(6):4783-4789.
[4] Paik U;Kim JY;Hackley VA.Rheological and electrokinetic behavior associated with concentrated nanosize silica hydrosols[J].Materials Chemistry and Physics,20051(1):205-211.
[5] Raghavan SR.;Khan SA.;Walls HJ..Rheology of silica dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen bonding[J].Langmuir: The ACS Journal of Surfaces and Colloids,200021(21):7920-7930.
[6] Yadav S;Shire SJ;Kalonia DS.Viscosity analysis of high concentration bovine serum albumin aqueous solutions.[J].Pharmaceutical research,20118(8):1973-1983.
[7] 伍秋美 .SiO<,2>分散体系流变学研究及其在防护材料方面的应用[D].中南大学,2007.
[8] 刘君;熊党生.羟基对高含量氧化硅分散体系流变性能的影响[J].硅酸盐学报,2010(5):908-912.
[9] Wei Wan;Jian Yang;Jinzhen Zeng.Effect of solid loading on gelcasting of silica ceramics using DMAA[J].CERAMICS INTERNATIONAL,20141 Pt.B(1 Pt.B):1735-1740.
[10] 陆成龙;彭玮珂;邓承继;员文杰;祝洪喜;黄青.SiO2微粉悬浮液的流变性能[J].耐火材料,2014(1):46-49,53.
[11] 冯海霞;王守业;曹喜营.SiO2微粉浆体的流变性研究[J].耐火材料,2008(5):345-348.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%