以Al2O3纳米微粒为复合材料的复合电镀是一种取代镀硬铬的板有价值的复合表面技术.Al2O3微粒与镍金属共沉积可明显提高镀层的硬度、耐磨性与耐蚀性.主要阐述了Al2O3纳米微粒与金属镍共沉积的工艺条件对沉积速率和镀层性能的影响.并且指出Al2O3纳米微粒复合镀镍中关键问题是如何提高复合镀层中纳米微粒的含量及镀层形貌对镀层性能的影响,以寻找控制镀层表面形貌的条件.
参考文献
[1] | Zhenxiang Li;Jianxi Zhao;Lihui Ren.Aqueous solution-chemical derived Ni-Al_2O_3 solar selective absorbing coatings[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2012:90-95. |
[2] | Gul H;Klc F;Aslan S et al.Characteristics of electro-codeposited Ni-Al2 O3 nano-particle reinforced metal matrix composite (MMC) coatings[J].Wear,2009,267:976-990. |
[3] | 谭澄宇,郑子樵,陈准.Ni-Al2O3纳米复合电镀工艺的初步研究[J].材料保护,2003(04):43-45. |
[4] | 彭元芳,赵国鹏,刘建平,曾振欧,于杰.Ni-α-Al2O3纳米复合电镀工艺条件的研究[J].电镀与涂饰,2003(05):7-12,53. |
[5] | 彭元芳,赵国鹏,刘建平,曾振欧,于杰.Ni-α-Al2O3纳米复合电镀最佳工艺条件的确定[J].表面技术,2004(01):53-55. |
[6] | 林文松,徐嘉,祁明珠.纳米Al2O3/Ni梯度镀层的电镀工艺研究[J].表面技术,2004(06):60-62. |
[7] | 孙建春 .Ni/纳米Al<,2>O<,3>复合电镀工艺的研究[D].重庆大学,2004. |
[8] | 吴化,李雪松,刘云旭,姜涛.耐磨Ni-Al2O3复合镀层组成机理及性能研究[J].表面技术,2004(06):28-30. |
[9] | Bogdan Szczygiel;Malgorzata Kotodziej .Composite Ni/Al{sub}2O{sub}3 coatings and their corrosion resistance[J].Electrochimica Acta,2005(20):4188-4195. |
[10] | Erler F;Jakob C;Romanus H et al.Interface behavior in nickel composite coatings with nano-particles of oxidic ceramic[J].Electrochimica Acta,2003,48:3063-3070. |
[11] | Chen L;Wang LP;Zeng ZX;Xu T .Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni-Al2O3 composite coatings[J].Surface & Coatings Technology,2006(3/4):599-605. |
[12] | 宋恩军,周琦,于海云,田金峰.Ni-Al2O3复合镀层的微观形貌与其耐磨耐蚀性能[J].电镀与精饰,2008(11):5-8,18. |
[13] | Zhou Qi;He Chun-lin;Cai Qing-kui.Effect of Al2O3 Powders on Properties of Electrodeposited Ni Matrix[J].Current Advances in Materials and Processes,2009(79-82):631-634. |
[14] | Muller B;Ferkel H .Al2O3-Nanoparticle distribution in plated nickel composite films[J].Nano-Structured Materials,1998,10(08):1285-1288. |
[15] | Feng, QY;Li, TJ;Yue, HY;Qi, K;Bai, FD;Jin, JZ .Preparation and characterization of nickel nano-Al2O3 composite coatings by sediment co-deposition[J].Applied Surface Science,2008(8):2262-2268. |
[16] | Alina-Crina Ciubotariu;Lidia Benea;Magda Lakatos-Varsanyi;Viorel Dragan .Electrochemical impedance spectroscopy and corrosion behaviour of Al{sub}2O{sub}3-Ni nano composite coatings[J].Electrochimica Acta,2008(13):4557-4563. |
[17] | 胡会利,程瑾宁,朱凤娟,李宁.镍基复合镀层在NaCl溶液中的电化学研究[J].电镀与环保,2006(06):1-4. |
[18] | Bund A;Thiemig D .Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and nickel[J].Surface & Coatings Technology,2007(16/17):7092-7099. |
[19] | 徐滨士,董世运,马世宁,王红美.n-Al2O3P/Ni复合刷镀层的组织和摩擦磨损特性[J].材料保护,2002(06):6-8. |
[20] | 蒋斌,徐滨士,董世运,丁培道.n-Al2O3/Ni复合镀层的组织与滑动磨损性能研究[J].材料工程,2002(09):33-36. |
[21] | Saha, R.K.;Khan, T.I. .Effect of applied current on the electrodeposited Ni-Al_2O_3 composite coatings[J].Surface & Coatings Technology,2010(3):890-895. |
[22] | Chang LM;An MZ;Guo HF;Shi SY .Microstructure and properties of Ni-Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2006(4):2132-2137. |
[23] | 冯秋元,李廷举,金俊泽.影响微粒复合沉积的诸因素[J].材料保护,2006(05):35-39. |
[24] | García-Lecina, E.;García-Urrutia, I.;Díez, J.A.;Morgiel, J.;Indyka, P. .A comparative study of the effect of mechanical and ultrasound agitation on the properties of electrodeposited Ni/Al _2O _3 nanocomposite coatings[J].Surface & Coatings Technology,2012(11/12):2998-3005. |
[25] | 何洪胤;陈敬全 .一种获得高耐磨,减摩纳米复合功能镀层的工艺:[P].中国,02133428 |
[26] | 李艳,周琦,赵丽平,才庆魁.添加剂对氧化铝粉体粒径的影响[J].沈阳工业大学学报,2011(02):133-137. |
[27] | 林文松,章立赟,杜林,张霖颖,柳晓青.镍 -纳米氧化铝复合电镀液的制备及影响因素研究[J].材料保护,2005(02):24-26. |
[28] | T. Tsubota;S. Tanii;T. Ishida .Composite electroplating of Ni and surface-modified diamond particles with silane coupling regent[J].Diamond and Related Materials,2005(3/7):608-612. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%