用小波分析作为信号处理工具将能对被分析信号进行更细致分析,获得比傅立叶分析更多的信号特征。本文研究采用主动监测技术,利用压电传感器及驱动器对结构进行实时大面积监测,同时引入先进信号处理方法-小波分析对检测信号进行时频局部化处理,提取同损伤相联系的特征。
The main research object of this article is the health monitoring smart composite structure that can self-diagnose the damage of composite material. Active monitoring technology and wavelet analysis methods are adopted. The results can help to enlarge the usage of composite material, increase the safety, prolong the life, reduce the cost,also can provide theoretical and experimental basis to the health monitoring of other materials.
参考文献
[1] | Keeyoung Choi;Fu-Kuo Chang .Identification of Impact Force and Location Using Distributed Sensors[J].AIAA journal,1996(1):136-142. |
[2] | YYWang et al.DetectionofflawsinSandwichPlates[J].Computers and Structures,1996,34:409-418. |
[3] | A Chukwujekwu et al.Delamination Prediction in Composite Beams with Built-in Piezoelectric Devices using Modal Analysis and Neural Network[J].Smart Materials and Structures,1996,5:338-347. |
[4] | FukuoChang .Proceedings of the International Workshop on Structural Health MonitoringstanfordUSA[Z].,1997. |
[5] | HaroldH Sze et al.Neural Network Adaptive Wavelets for Signal Representation and Classification[J].Optical Engineering,1992,31(09):1907-1916. |
[6] | Zhang Q.;Benveniste A. .Wavelet networks[J].IEEE Transactions on Neural Networks,1992(6):889-898. |
[7] | CharlesKCHUI.An Introduction to Wavelets[M].AcademicPress,1992 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%