欢迎登录材料期刊网

材料期刊网

高级检索

综述了Laves相NbCr2的合金化增韧机理,评述了各种合金化元素对Laves相NbCr2合金相稳定性、组织和力学性能的影响,指出了存在的问题及发展趋势.

参考文献

[1] Kwai S. Chan;David L. Davidson .The Fracture Resistance and Crack-Tip Micromechanics of In-Situ Intermetallic Composites[J].JOM,1996(9):62-67.
[2] TAKEYAMA M;LIU C T .Microstructure and mechanical properties of Laves-phase alloys based on Cr2Nb[J].Materials Science and Engineering,1991,A132:61-66.
[3] BRADY M P;TORTORELLI P F;WALKER L R .Water vapor and oxygen/sulfur-impurity effects on oxidation and nitridation in single-and two-phase Cr-Nb alloys[J].Oxidation of Metals,2002,58(3-4):297-318.
[4] KIM W Y;TAKASUGI T .Laves phase fields in Cr-gr-Nb and CrZr-Hf alloy systems[J].Scripta Materialia,2003,48:559-563.
[5] D.L. DAVIDSON;K.S. CHAN;D.L. ANTON .The Effects on Fracture Toughness of Ductile-Phase Composition and Morphology in Nb-Cr-Ti and Nb-Si In Situ Composites[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1996(10):3007-3018.
[6] A. Kellou;T. Grosdidier;C. Coddet .Theoretical study of structural, electronic, and thermal properties of Cr_2(Zr,Nb) Laves alloys[J].Acta materialia,2005(5):1459-1466.
[7] Thoma DJ.;Nibur KA.;Chen KC.;Cooley JC.;Dauelsberg LB.;Hults WL. Kotula PG. .The effect of alloying on the properties of (Nb,Ti)Cr-2 C15 Laves phases[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(0):408-415.
[8] THOMA D J;CHU F;PERALTA P et al.Elastic and mechanical properties of Nb(Cr,V)2 C15 Laves phases[J].Materials Science and Engineering,1997,A239-240:251-259.
[9] THOMA D J;PEREPEZKO J H .A geometric analysis of solubility ranges in Laves phases[J].Journal of Alloys and Compounds,1995,224:330-341.
[10] CHEN K C;CHU F;PAUL G K et al.HfCo2 Laves phase intermetallics-part Ⅱ:elastic and mechanical properites as a function of composition[J].Intermetallies,2001,9:785-798.
[11] 曲选辉;何定玉;黄伯云.Laves相铬化的研究[J].高技术通讯,1996(12):27-30.
[12] K.S. KUMAR;P.M. HAZZLEDINE .Polytypic transformations in Laves phases[J].Intermetallics,2004(7/9):763-770.
[13] J.H. Zhu;C.T. Liu;L.M. Pike .Enthalpies of formation of binary Laves phases[J].Intermetallics,2002(6):579-595.
[14] YOSHIDA M;TAKASUGI T .The alloy effect on the high temperature deformation of Laves phase NbCr2 intermetallic compound[J].Materials Science and Engineering,1997,A234-236:873-876.
[15] K. S. KUMAR;L. PANG;C. T. LIU .STRUCTURAL STABILITY OF THE LAVES PHASE Cr_2Ta IN A TWO-PHASE Cr-Cr_2Ta ALLOY[J].Acta materialia,2000(4):911-923.
[16] K. S. Kumar;L. Pang;J. A. Horton .Structure and composition of Laves phases in binary Cr-Nb, Cr-Zr and ternary Cr-(Nb, Zr) alloys[J].Intermetallics,2003(7):677-685.
[17] GRUJICIC M;TANGRILA S .Effect of iron additions on structure of Laves phases in Nb-Cr-Fe alloys[J].Materials Science and Engineering,1993,A160:37-48.
[18] T. TAKASUGI;M. YOSHIDA;S. HANADA .DEFORMABILITY IMPROVEMENT IN C15 NbCr_2 INTERMETALLICS BY ADDITION OF TERNARY ELEMENTS[J].Acta materialia,1996(2):669-674.
[19] Ohta T.;Nakagawa Y.;Kaneno Y.;Inoue H.;Takasugi IT.;Kim WY. .Microstructures and mechanical properties of NbCr2 and ZrCr2 Laves phase alloys prepared by powder metallurgy[J].Journal of Materials Science,2003(4):657-665.
[20] LIU C T;TORTORELLI P F;HORTON J A et al.Effects of alloy additions on the microstructure and properties of Cr-Cr2 Nb alloys[J].Materials Science and Engineering,1996,A214:23-32.
[21] DAVIDSON D L;CHAN K S .The effect of microstructure on the fracture resistance of Nb-Cr-Ti in situ composites[J].Scripta Materialia,1997,38(07):1155-1161.
[22] KWAI S. CHAN .The Fracture Toughness of Niobium-Based, In Situ Composites[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,1996(9):2518-2531.
[23] Bewlay BP.;Jackson MR.;Reeder WJ.;Sutliff JA.;Lipsitt HA. .SOLIDIFICATION PROCESSING OF HIGH TEMPERATURE INTERMETALLIC EUTECTIC-BASED ALLOYS[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(0):534-543.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%