{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"","authors":[{"authorName":"魏晨","id":"8bebbdde-9fb1-4e20-a898-d2e12e1a39dd","originalAuthorName":"魏晨"},{"authorName":"姚肖男","id":"1cec0a07-185f-4765-af20-bb322518a52f","originalAuthorName":"姚肖男"},{"authorName":"孙博勋","id":"c3f7630f-2184-41ad-a2fe-28e2d9c109b1","originalAuthorName":"孙博勋"},{"authorName":"蔡泽伦","id":"a51dee97-f0fb-4b9a-a49f-39717229041b","originalAuthorName":"蔡泽伦"},{"authorName":"赵子丰","id":"f4de85ed-a14a-4612-8d47-276c1220d382","originalAuthorName":"赵子丰"},{"authorName":"陈明星","id":"2cf2e0a0-9abf-4944-91de-e14c634d064e","originalAuthorName":"陈明星"},{"authorName":"卫慧波","id":"f7c9a6cd-db5f-4f9a-adc3-276a1e65df03","originalAuthorName":"卫慧波"},{"authorName":"刘志伟","id":"45456a95-5118-40a9-b019-bf7805227482","originalAuthorName":"刘志伟"},{"authorName":"卞祖强","id":"05043ca2-fb38-4f59-8bfa-3cd42045e6e3","originalAuthorName":"卞祖强"},{"authorName":"黄春辉","id":"e0feec46-5982-404a-98c3-4ded91d39a5b","originalAuthorName":"黄春辉"}],"doi":"10.1016/S1002-0721(16)60166-7","fpage":"7","id":"6dca48a6-f09f-4b4d-8d47-64fab2c61516","issue":"1","journal":{"abbrevTitle":"XTXBYWB","coverImgSrc":"journal/img/cover/XTXBEN.jpg","id":"66","issnPpub":"1002-0721","publisherId":"XTXBYWB","title":"稀土学报(英文版)"},"keywords":[{"id":"481d48c1-e23d-4b93-a350-983532c60967","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"zgxtxb-e201701003","title":"","volume":"35","year":"2017"},{"abstractinfo":"采用纸质材料制成三维管状模型,经过纸质模型碳化、反应性渗硅处理获得多孔SiC陶瓷预制体,选择铸造性能好、成形缺陷小的铸铁作为金属基体,采用铸渗法制备了SiC陶瓷增强金属基复合材料,通过XRD,SEM等分析手段研究了多孔SiC陶瓷和复合材料的显微组织和界面结构.研究表明,纸质模型800C温度碳化,反应性渗硅温度1600℃时制备的多孔SiC陶瓷预制体三维结构稳定,烧结后变形小,微观组织结合紧密;通过铸渗法制备的SiC陶瓷增强金属基复合材料界面结合良好,无明显缺陷.该方法中增强相结构可设计性好,铸渗法制备多孔陶瓷金属基复合材料质量高,为多孔陶瓷增强金属基复合材料的获得提供了试验新方法.","authors":[{"authorName":"刘志伟","id":"fd31e7f0-2e3a-4d00-8d7a-fe6d19b11d2f","originalAuthorName":"刘志伟"},{"authorName":"鲍崇高","id":"e576573e-399c-418a-b3b7-7ca31bbc5f01","originalAuthorName":"鲍崇高"}],"doi":"","fpage":"852","id":"09660f42-704f-4c94-b441-f12c3dd249d1","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"61c5ec40-3dc2-45ea-8a01-ab73fd536a50","keyword":"SiC陶瓷","originalKeyword":"SiC陶瓷"},{"id":"92991707-d187-446e-98f4-2ed1b3a4d32c","keyword":"反应性渗硅","originalKeyword":"反应性渗硅"},{"id":"2f47d7de-4220-435e-8373-a6b1199df1a3","keyword":"铸渗","originalKeyword":"铸渗"},{"id":"58ecff03-3954-493b-a328-a6c9b2011ce3","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"}],"language":"zh","publisherId":"xyjsclygc2007z1240","title":"多孔SiC陶瓷增强金属基复合材料的制备","volume":"36","year":"2007"},{"abstractinfo":"采用TMCP控轧控冷技术,用普碳钢成分生产出了Q345B高强度热轧带钢.生产中通过调整中间坯厚度与成品厚度之比,同时控制终轧温度和卷取温度,将铁素体晶粒细化和珠光体相变强化相结合,得到了高强高韧性热轧钢板.钢板冷成型性和焊接性良好,实现了Q345B的合金减量化生产.","authors":[{"authorName":"杨玉","id":"03e2dc19-df4a-492a-8b8f-f9a0f91eb7c9","originalAuthorName":"杨玉"},{"authorName":"杨旭","id":"e578858c-d7ea-4120-9f0f-230abe03d2ef","originalAuthorName":"杨旭"},{"authorName":"张吉富","id":"32e4ddc2-4d6e-45cc-b443-0ec8adc0052b","originalAuthorName":"张吉富"},{"authorName":"乔磊","id":"7f84f25d-c32b-40af-aa0b-52336b9cfe2f","originalAuthorName":"乔磊"},{"authorName":"刘志伟","id":"1fdcb642-7286-4dbb-86d4-66be3b71c016","originalAuthorName":"刘志伟"},{"authorName":"王英海","id":"03043b83-deb7-4d30-abb7-ac3362a8a1e9","originalAuthorName":"王英海"}],"doi":"","fpage":"27","id":"56b69917-6eeb-4018-98e1-4098728a6439","issue":"2","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"eca7e378-2d5b-47df-ba12-9cf7fb25c62b","keyword":"控轧控冷","originalKeyword":"控轧控冷"},{"id":"26f936be-e313-48e2-b86c-f7408f27aaaf","keyword":"Q345B钢","originalKeyword":"Q345B钢"},{"id":"0f661adf-e4d3-4162-89ba-24b31629b538","keyword":"珠光体","originalKeyword":"珠光体"},{"id":"bf5b80bd-ef08-41c8-ae75-60fb1072be5b","keyword":"铁素体","originalKeyword":"铁素体"},{"id":"50af59d7-5aeb-4085-a397-f4896bffbf5f","keyword":"合金减量化","originalKeyword":"合金减量化"}],"language":"zh","publisherId":"shjs201402007","title":"TMCP技术在Q345B低合金化生产中的应用","volume":"36","year":"2014"},{"abstractinfo":"介绍了屈服强度700 MPa级集装箱用高强钢的成分设计思路和主要的轧制工艺参数,并分析了产品的性能、组织和析出相.试制结果表明:通卷钢板的力学性能均匀,组织由位错密度很高的块状铁素体和少量贝氏体组成,析出相主要为不同形态的铌、钛的碳氮化物,在铁素体中析出的细小的TiC第二相粒子沉淀强化作用更大.","authors":[{"authorName":"刘志伟","id":"738c6497-ae21-4e40-86e4-86ea38e195ec","originalAuthorName":"刘志伟"},{"authorName":"赵宝纯","id":"58ddbabf-2d8c-4b05-92bc-5eb488401549","originalAuthorName":"赵宝纯"},{"authorName":"郭晓宏","id":"0468a608-17f8-4cc2-a978-fcc114dcd4a5","originalAuthorName":"郭晓宏"},{"authorName":"刘凤莲","id":"5950accf-3722-4586-b86f-d0957c1d5b6b","originalAuthorName":"刘凤莲"},{"authorName":"乔磊","id":"2b0fabbf-ddef-4413-b911-141e0ad26dfc","originalAuthorName":"乔磊"},{"authorName":"杨玉","id":"41fa4bdc-fb45-4d1a-bf44-9685726269e2","originalAuthorName":"杨玉"}],"doi":"","fpage":"9","id":"728ed70b-6169-459a-80f3-4ebd3778aa1c","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"1a3c41f5-a3c6-4777-8b39-8bcea1298d12","keyword":"集装箱","originalKeyword":"集装箱"},{"id":"503870de-e6a4-482c-9b9a-a02c1ccce6c6","keyword":"700 MPa级高强钢","originalKeyword":"700 MPa级高强钢"},{"id":"a05a5d7f-0a61-4779-a84e-88f6af093211","keyword":"热轧卷板","originalKeyword":"热轧卷板"},{"id":"53a9b706-ef07-4180-b677-ffca4cb5750c","keyword":"析出相","originalKeyword":"析出相"}],"language":"zh","publisherId":"shjs201304003","title":"700MPa级高强集装箱用钢的研制","volume":"35","year":"2013"},{"abstractinfo":"首次对一尖部失速型的亚音轴流压气机转子进行了非轴对称机匣造型的设计和研究.本文首先分析了压气机非轴对称机匣造型与已有的非轴对称端壁造型概念的异同点,进而对本文研究的转子给出了非轴对称机匣造型的实例,对流场进行了定常与非定常的数值模拟,着重研究了非轴对称造型机匣对转子整体性能和稳定裕度的影响,对造型面对叶顶流动的改变进行了动态的分析,总结了该类机匣设计的初步经验.通过对同转子上非轴对称机匣造型与实壁机匣,周向槽和轴向槽机匣的对比,可以得出结论:精细设计的非轴对称机匣有效利用了叶顶局部压差,以及造型面的流线化,实现了对叶顶流动的优化,在不损失压气机整体性能的条件下实现了一定程度的扩稳.其应用前景值得关注和深入的研究.","authors":[{"authorName":"卢家玲","id":"32046ce8-cc76-4190-b533-29515d75ad70","originalAuthorName":"卢家玲"},{"authorName":"楚武利","id":"060fb7c7-1647-43ee-ba7d-1c3bec4ad0b4","originalAuthorName":"楚武利"},{"authorName":"刘志伟","id":"b4d284ec-03d7-4750-a586-8121f113bdd5","originalAuthorName":"刘志伟"},{"authorName":"吴艳辉","id":"938d542c-6527-44b8-82d0-5645083fd5f5","originalAuthorName":"吴艳辉"}],"doi":"","fpage":"209","id":"9857ee26-7cd8-4715-b9f6-8157d4dfaac4","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f6d74765-76a8-4a1d-9417-09c883e790cf","keyword":"非轴对称机匣造型","originalKeyword":"非轴对称机匣造型"},{"id":"e2125565-2e54-49ab-959d-e9364d5cf98d","keyword":"周向槽","originalKeyword":"周向槽"},{"id":"5c337f75-0da3-4ffc-8506-f293d07742fb","keyword":"轴向槽","originalKeyword":"轴向槽"},{"id":"f420ebca-c1e2-43b1-a7e9-5525f31eec15","keyword":"失速","originalKeyword":"失速"},{"id":"701224dd-f671-4c73-abeb-9096c357bb56","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200902008","title":"轴流压气机非轴对称机匣造型的研究","volume":"30","year":"2009"},{"abstractinfo":"介绍了鞍钢搪玻璃压力容器专用钢板的生产工艺,分析了显微组织和性能.结果表明,该钢板具有良好的焊接性、搪烧密着性、抗鳞爆性等综合性能,经多次搪烧处理后力学性能稳定,适合于生产搪玻璃压力容器.","authors":[{"authorName":"刘凤莲","id":"db266d52-e1b5-461c-96c2-a4c8e3989173","originalAuthorName":"刘凤莲"},{"authorName":"李桂艳","id":"bbc9a9c5-d1a4-4c76-b944-40be5a480d6d","originalAuthorName":"李桂艳"},{"authorName":"刘志伟","id":"3f3c05e7-f110-4fea-bc6c-de5a06e6d270","originalAuthorName":"刘志伟"},{"authorName":"赵宝纯","id":"4ff5b6b5-e4dd-435f-bed1-aba0ea295ce7","originalAuthorName":"赵宝纯"}],"doi":"","fpage":"36","id":"9d4db32b-6db3-4c68-8e1d-e28f6ddd7916","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"b016a475-7447-4b08-9914-92ef6674f73a","keyword":"搪玻璃","originalKeyword":"搪玻璃"},{"id":"bd6710f6-295c-4b41-b34f-2b6841d7ae5e","keyword":"压力容器","originalKeyword":"压力容器"},{"id":"9186ab9d-ac08-43cf-b6a9-0d11776c1d75","keyword":"热轧钢板","originalKeyword":"热轧钢板"},{"id":"0c60b725-4ac6-418d-8e66-842a6ebca7ba","keyword":"生产","originalKeyword":"生产"}],"language":"zh","publisherId":"shjs201305009","title":"搪玻璃压力容器专用钢板的生产实践","volume":"35","year":"2013"},{"abstractinfo":"对正火45钢基体上的Cr、W、Mo和Ni电极电火花熔涂层在水、5vol%盐酸及硝酸水溶液中的腐蚀行为进行了研究.结果表明,熔涂层的抗腐蚀能力,在水中,优于正火45钢,但在酸性介质中,比正火45钢的抗腐蚀能力还差.熔涂层腐蚀破坏的主要机理是成分和组织不均匀引起的电化学腐蚀和局部腐蚀,最终导致熔涂层剥落.\n\n","authors":[{"authorName":"赵会友","id":"301aa969-7fdb-457c-bbc1-862f3291fc5b","originalAuthorName":"赵会友"},{"authorName":"曲敬信","id":"e3f62efb-e25a-4df5-8612-12ec076a0d9e","originalAuthorName":"曲敬信"},{"authorName":"陈华辉","id":"800f718e-c180-4297-ace0-28f6b8c83c7a","originalAuthorName":"陈华辉"},{"authorName":"刘志伟","id":"c4e519ac-1d99-4fa8-bcec-20ca5b2c70bb","originalAuthorName":"刘志伟"},{"authorName":"张祝伟","id":"e93534ac-a65a-49f0-b5e3-d1682a970ddd","originalAuthorName":"张祝伟"}],"categoryName":"|","doi":"","fpage":"104","id":"9f42c331-3aa2-4249-b192-ce903afdcb9a","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"64aac06c-5c26-416b-8558-fc19ea0b05d3","keyword":"电火花熔涂","originalKeyword":"电火花熔涂"},{"id":"e9999934-9c10-426f-a3b3-98193052cd83","keyword":"null","originalKeyword":"null"},{"id":"6be86fd8-f786-4312-aeda-727b8e7f3a0a","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2006_2_5","title":"几种电火花熔涂层的腐蚀性能研究","volume":"18","year":"2006"},{"abstractinfo":"用环块磨损试验机对铬电极电火花放电熔涂层的干摩擦滑动磨损特性进行了研究.结果表明,轻载低速条件下,熔涂层的干摩擦滑动磨损机制以氧化磨损为主,与淬火低温回火态45钢相比,熔涂层的耐磨性是45钢的2~4倍;重载高速条件下,熔涂层的干摩擦滑动磨损机制比较复杂,存在磨料磨损,粘着磨损,剥层磨损等多种机制,熔涂层的耐磨性是45钢的15倍以上.","authors":[{"authorName":"赵会友","id":"5ba6004a-fdd0-4f9a-9218-013e9ee75ba7","originalAuthorName":"赵会友"},{"authorName":"曲敬信","id":"b3ee9177-121b-45dd-8dae-d19bd492a94b","originalAuthorName":"曲敬信"},{"authorName":"陈华辉","id":"4b92bf5f-c4cb-4f00-8585-e1356c341d91","originalAuthorName":"陈华辉"},{"authorName":"张祝伟","id":"73cd7169-d6e1-4a7c-b1d2-45be6367673a","originalAuthorName":"张祝伟"},{"authorName":"刘志伟","id":"e33ac2b2-50b0-4144-88fe-4f3c1d5db13e","originalAuthorName":"刘志伟"}],"doi":"10.3969/j.issn.1009-6264.2005.04.025","fpage":"98","id":"a4eb578f-3d50-4bea-8611-339bfd6a2461","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"e42c1031-1920-427c-b729-4da65dbea37f","keyword":"干摩擦滑动磨损","originalKeyword":"干摩擦滑动磨损"},{"id":"54409256-458e-4f0b-99bf-56a35e7f387c","keyword":"电火花熔涂","originalKeyword":"电火花熔涂"},{"id":"835bb884-bdc5-4a1b-bfa1-9c53a2124f89","keyword":"铬","originalKeyword":"铬"},{"id":"059160a3-f853-4da4-ba0e-44d1414d2485","keyword":"涂层","originalKeyword":"涂层"}],"language":"zh","publisherId":"jsrclxb200504025","title":"铬电极电火花熔涂层的干摩擦滑动磨损特性","volume":"26","year":"2005"},{"abstractinfo":"对正火45钢基体上的Cr、W、Mo和Ni电极电火花熔涂层在水、5vol%盐酸及硝酸水溶液中的腐蚀行为进行了研究.结果表明,熔涂层的抗腐蚀能力,在水中,优于正火45钢,但在酸性介质中,比正火45钢的抗腐蚀能力还差.熔涂层腐蚀破坏的主要机理是成分和组织不均匀引起的电化学腐蚀和局部腐蚀,最终导致熔涂层剥落.","authors":[{"authorName":"赵会友","id":"d4fca6d1-5cda-4347-8c1f-8907c37c4b99","originalAuthorName":"赵会友"},{"authorName":"曲敬信","id":"040d0ad2-e1d9-4232-b78d-87a579a292e6","originalAuthorName":"曲敬信"},{"authorName":"陈华辉","id":"137a6ac7-87af-430e-a890-2296df3e4f72","originalAuthorName":"陈华辉"},{"authorName":"刘志伟","id":"46d612d9-03b8-4ca5-a16f-c36ab6801702","originalAuthorName":"刘志伟"},{"authorName":"张祝伟","id":"9bdf1356-911e-4263-8b3a-aa0ac0448b31","originalAuthorName":"张祝伟"}],"doi":"10.3969/j.issn.1002-6495.2006.02.008","fpage":"104","id":"3deb7c8e-fb50-4336-a02e-76eb4a4fa5e3","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"ee8a3ea8-c6ec-4f9f-ab6d-317d091681bb","keyword":"电火花熔涂","originalKeyword":"电火花熔涂"},{"id":"b435b83a-5b19-4770-9dc2-f7401f622c8e","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"d97cec19-95fd-4b5c-bf39-ba90d82c9420","keyword":"涂层","originalKeyword":"涂层"}],"language":"zh","publisherId":"fskxyfhjs200602008","title":"几种电火花熔涂层的腐蚀性能研究","volume":"18","year":"2006"},{"abstractinfo":"组蛋白翻译后修饰是一种表观遗传学修饰,参与调控细胞的新陈代谢等重要生理过程.蛋白质组学发展迅速,使监控组蛋白翻译后修饰的动态变化成为可能.目前主要有3种无标定量方法(谱图计数法、峰面积积分法和信号强度法),但何种定量方法更可靠尚未见系统性的详细报道.在稳定同位素标记细胞培养技术(SILAC)基础上,对去乙酰化酶抑制剂(SAHA)调控细胞乙酰化修饰水平的定量数据进行对比,比较3种无标定量方法对组蛋白翻译后修饰进行的定量分析,利用定量结果的标准差(SD)评估定量的可靠性,最终发现基于峰面积积分法定量的结果可靠性最高.该研究对难以进行同位素标记实验的样本分析,尤其对临床样本、大样本的组蛋白修饰谱分析具有重要参考意义.","authors":[{"authorName":"刘志伟","id":"7dc7e6ac-3cfd-4e53-928e-2a9864b2bc74","originalAuthorName":"刘志伟"},{"authorName":"朱明睿","id":"bb03c4b1-729c-4c56-90de-ac57f8ba37c0","originalAuthorName":"朱明睿"},{"authorName":"翟琳辉","id":"863587f6-0248-4389-9fe6-2600308593cd","originalAuthorName":"翟琳辉"},{"authorName":"谭敏佳","id":"509128f1-2f27-44f3-9f05-676cf561774a","originalAuthorName":"谭敏佳"}],"doi":"10.3724/SP.J.1123.2016.04040","fpage":"825","id":"815b778c-defb-45aa-95e4-80f16bd964c9","issue":"9","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"d81d26f9-5a48-4fb4-8f04-9e669d560a49","keyword":"组蛋白翻译后修饰","originalKeyword":"组蛋白翻译后修饰"},{"id":"0afa5805-be65-4efc-890e-00a69646873e","keyword":"无标定量","originalKeyword":"无标定量"},{"id":"72591779-7eb8-4313-96e9-b821be66e97c","keyword":"可靠性","originalKeyword":"可靠性"}],"language":"zh","publisherId":"sp201609001","title":"组蛋白翻译后修饰无标定量方法可靠性的比较","volume":"34","year":"2016"}],"totalpage":10,"totalrecord":99}