欢迎登录材料期刊网

材料期刊网

高级检索

采用X射线衍射(XRD)、能谱分析(EDS)等方法研究脉冲电沉积法制备的纳米晶Ni-Co合金镀层的组织结构和合金成分.测定不同退火温度下纳米晶Ni-Co合金镀层的显微硬度,并着重研究Ni-23.5%Co(质量分数)合金的热稳定性,结果表明:随着退火温度的升高,纳米晶Ni-Co合金在低温退火后显微硬度有所升高,在250℃时达到最高值,然后随退火温度的继续升高而降低.纳米晶Ni-23.5%Co合金镀层的晶粒尺寸逐渐增大,从原始晶粒尺寸13.5nm长大到300℃时的98.5nm,在升温速率为20K·min-1的DSC曲线中,Ni-23.5%Co合金在约300~350℃一直是低能放热,随后出现明显的放热峰,其峰值温度为372℃,放热焓为14.22J·g-1.通过测定不同升温速率条件下的DSC曲线峰值温度,由Kissinger方程求得纳米晶Ni-23.5%Co合金镀层的晶粒长大激活能为212.SkJ/mol.

参考文献

[1] 乔桂英,荆天辅,高明,王艳,高聿为,韩东升.高速喷射电沉积块体纳米晶C0-Ni合金[J].材料热处理学报,2004(01):61-65.
[2] 卢柯.金属纳米晶体的界面热力学特性[J].物理学报,1995(09):1454-1460.
[3] Q. Meng;N. Zhou;Y. Rong;S. Chen;T. Y. Hsu .Size effect on the Fe nanocrystalline phase transformation[J].Acta materialia,2002(18):4563-4570.
[4] 喻辉,戴品强.脉冲电沉积纳米晶体镍镀层热稳定性的研究[J].金属热处理,2005(06):16-18.
[5] HIBBARD G;AUST K T;PALUMBO G et al.Thermal stability of electrodeposited nanocrystalline cobalt[J].Scripta Materialia,2001,44(03):513-518.
[6] BOVLAN K;OSTRANTER D;ERB U et al.In-situ TEM study of the thermal stability of nanocrystalline Ni-P[J].Scripta Metallurgica,1991,25(12):2711-2716.
[7] 王立平,高燕,刘惠文,薛群基,徐洮.相结构对Ni-Co合金镀层摩擦磨损性能的影响[J].电镀与环保,2005(02):14-16.
[8] Wang LP;Gao Y;Xue QJ;Liu HW;Xu T .Microstructure and tribological properties of electrodepo sited Ni-Co alloy deposits[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2005(3/4):326-332.
[9] 朱龙章.镍钴合金镀层的电沉积及其耐蚀性的研究[J].材料保护,1997(05):4.
[10] 乔桂英,荆天辅,肖福仁,高聿为.脉冲电沉积块体纳米晶Co-Ni合金微观组织结构的研究[J].金属学报,2001(08):815-819.
[11] 乔桂英,荆天辅,肖福仁,高聿为.喷射电沉积Co-Ni纳米合金沉积层的组织和性能[J].材料研究学报,2004(05):542-548.
[12] Srivastava M;Selvi VE;Grips VKW;Rajam KS .Corrosion resistance and microstructure of electrodeposited nickel-cobalt alloy coatings[J].Surface & Coatings Technology,2006(6):3051-3060.
[13] T. S. Eagleton;J. P. G. Farr;M. A. Ashworth;M. G. Hall .The use of crystal orientation in mapping the electrodeposition of cobalt and copper[J].Transactions of the Institute of Metal Finishing,2000(2):61-64.
[14] THUVANDER M;ABRAHAM M;CEREZO A et al.Therreal stability of electrodeposited nanocrystalline nickel and ironnickel alloys[J].Journal of Materials Science and Technology,2001,17:961-970.
[15] A. Hasnaoui;H. Van Swygenhoven;P.M. Derlet .On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation[J].Acta materialia,2002(15):3927-3939.
[16] KLEMENT U;ERB U;EL-SHERIK A M et al.Thermal stability of nanocryastalline Ni[J].Materials Science and Engineering,1995,203(1--2):177-186.
[17] 程军胜,郝斌,陈汉宾,杨滨,樊建中,张济山.低温球磨制备纳米晶Al-Zn-Mg-Cu合金粉末的热稳定性研究[J].金属热处理,2006(12):19-24.
[18] KISSINGER H E .Reaction kinetics in differential thermal analysis[J].Analytical Chemistry,1957,29:1672-1706.
[19] NING WANG;ZHIRUI WANG;K.T.AUST .ISOKINETIC ANALYSIS OF NANOCRYSTALLINE NICKEL ELECTRODEPOSITS UPON ANNEALING[J].Acta materialia,1997(4):1655-1669.
[20] Khan AS.;Takacs L.;Zhang HY. .Mechanical response and modeling of fully compacted nanocrystalline iron and copper[J].International Journal of Plasticity,2000(12):1459-1476.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%