镁合金板材在变形镁合金中占有重要的地位,但其轧制成型工艺还不是很成熟.分析了镁合金轧制成型的特点,论述了镁合金板材轧制成型的工艺,及异步轧制、等径角轧制、交叉棍轧制、累积叠轧等轧制方式对轧制成形性及板材组织性能的影响.重点阐述了通过调整轧制工艺和选择轧制方式提高镁合金的轧制成形性.指出了镁合金板材轧制中存在的问题和今后发展的方向.
参考文献
[1] | 汪凌云,黄光杰,陈林,黄光胜,李伟,潘复生.镁合金板材轧制工艺及组织性能分析[J].稀有金属材料与工程,2007(05):910-914. |
[2] | DELL-VALLE J A;PEREZ-PRADO M T;RUANO O A .Tex-ture evolution during large strain hot rolling of the AZ61 Mg alloy[J].Materials Science and Engineering A,2003,355(1-2):68-78. |
[3] | Kalidindi SR. .Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals[J].International Journal of Plasticity,2001(6):837-860. |
[4] | 李姗 .AZ31变形镁合金板材轧制工艺、组织与性能[D].西安建筑科技大学,2007. |
[5] | 陈维平,陈宛德,詹美燕,李元元.轧制温度和变形量对AZ31镁合金板材组织和硬度的影响[J].特种铸造及有色合金,2007(05):338-341. |
[6] | BARNETT M R;NAVEA M D;BETTLES C J .Deformation microstructures and textures of some cold rolled Mg alloys[J].Materials Science and Engineering A,2004,386(1-2):205-211. |
[7] | 陈彬,林栋樑,曾小勤,卢晨.AZ31镁合金大压下率轧制的研究[J].锻压技术,2006(03):1-3. |
[8] | 傅定发,许芳艳,夏伟军,刘天喜,陈振华.退火工艺对轧制AZ31镁合金组织和性能的影响[J].湘潭大学自然科学学报,2005(04):57-61. |
[9] | 程永奇,陈振华,夏伟军,傅定发.退火处理对AZ31镁合金轧制板材组织与冲压性能的影响[J].有色金属,2006(01):5-9. |
[10] | 张文玉,刘先兰,陈振华.轧制路径对AZ31镁合金薄板组织性能的影响[J].特种铸造及有色合金,2007(09):716-719. |
[11] | 曲家惠,姚路明,王福.AZ31镁合金在不同轧制方式下的织构演变[J].轻合金加工技术,2008(08):29-32,40. |
[12] | 张青来,胡永学,王粒粒,孙毓蔚,周娅莉.挤压后交叉轧制的镁合金薄板组织研究[J].热加工工艺,2007(09):1-5. |
[13] | Takayuki Kobayashi;Junichi Koike;Yu Yoshida .Grain Size Dependence of Active Slip Systems in an AZ31 Magnesium Alloy[J].日本金属学会誌,2003(4):149-152. |
[14] | W. -J. KIM;S. W. CHUNG;C. S. CHUNG .SUPERPLASTICITY IN THIN MAGNESIUM ALLOY SHEETS AND DEFORMATION MECHANISM MAPS FOR MAGNESIUM ALLOYS AT ELEVATED TEMPERATURES[J].Acta materialia,2001(16):3337-3345. |
[15] | Tien-Chan Chang;Jian-Yi Wang;Chia-Ming O .Grain refining of magnesium alloy AZ31 by rolling[J].Journal of Materials Processing Technology,2003(1/3):588-591. |
[16] | H. Gao;S.C. Ramalingam;G.C. Barber .Analysis of asymmetrical cold rolling with varying coefficients of friction[J].Journal of Materials Processing Technology,2002(1/2):178-182. |
[17] | Su-Hyeon Kim;Bong-Sim You;Chang Dong Yim .Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets[J].Materials Letters,2005(29/30):3876-3880. |
[18] | H. Watanabe;T. Mukai;K. Ishikawa .Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy[J].Journal of Materials Processing Technology,2007(26):644-647. |
[19] | Sang Heon Lee;Dong Nyung Lee .Analysis of deformation textures of asymmetrically rolled steel sheets[J].International Journal of Mechanical Sciences,2001(9):1997-2015. |
[20] | 张文玉,刘先兰,陈振华.异步轧制AZ31镁合金板材的组织和晶粒取向[J].机械工程材料,2007(12):19-23. |
[21] | 曲家惠,张正贵,王福,左良.AZ31镁合金室温异步轧制的织构演变[J].材料研究学报,2007(04):354-358. |
[22] | 程永奇,陈振华,夏伟军,傅定发.等径角轧制AZ31镁合金板材的组织与性能[J].中国有色金属学报,2005(09):1369-1375. |
[23] | Yong Qi Cheng;Zhen Hua Chen;Wei Jun Xia;Tao Zhou .Effect of channel clearance on crystal orientation development in AZ31 magnesium alloy sheet produced by equal channel angular rolling[J].Journal of Materials Processing Technology,2007(1/3):97-101. |
[24] | M.T. Perez-Prado;J.A. del Valle;O.A. Ruano .Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding[J].Scripta materialia,2004(11):1093-1097. |
[25] | J.A. del Valle;M.T. Perez-Prado;O.A. Ruano .Accumulative roll bonding of a Mg-based AZ61 alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(0):353-357. |
[26] | 常量,曾小勤,丁文江.不同轧制方法制得镁合金板材的组织和织构特点[J].轻合金加工技术,2007(04):4-9,53. |
[27] | Yasumasa Chino;Kensuke Sassa;Akira Kamiya;Mamoru Mabuchi .Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):349-356. |
[28] | Yasumasa Chino;Kensuke Sassa;Akira Kamiya .Microstructure and press formability of a cross-rolled magnesium alloy sheet[J].Materials Letters,2007(7):1504-1506. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%