欢迎登录材料期刊网

材料期刊网

高级检索

采用化学气相沉积(CVD)法,在SiC纤维表面沉积了100nm厚的C涂层,研究了制备温度对C涂层微观结构、单丝纤维体电导率及纤维编制体介电性能的影响.采用SEM和RAM显微技术(Raman microscopy)对C涂层的表面形貌和微观结构进行分析.结果表明:保持C涂层厚度一致,当沉积温度由800℃升到900℃后,C涂层的石墨化程度提高,晶粒变大,SiC纤维单丝体电导率由0.745Ω~(-1)·cm~(-1)升到6.289Ω~(-1)·cm~(-1);SiC纤维编制体的复介电常数实部由90升到132,介电损耗由0.95升到1.14,其中虚部由87升到150.实部增大与载流子浓度增大有关,虚部增大与材料漏导电有关.认为这是SiC纤维表面沉积的C层使纤维电导率增大所致.直流电导损耗足其主要损耗机制.

A earbon coating of 100nm thick was prepared on the surface of SiC fibers by chemical vapor deposition method. The effect of fabrication temperature on microstructure of carbon coating and on the body conductivity, permittivity of carbon-coated fiber was studied. Scanning electron microscopy and Raman microscopy were employed to investigate the surface morphology and microstructure of the coatings. The results show that when fabrication temperature increases from 800℃ to 900℃, the crystallization degree and the grain size of carbon coatings increase and the body conductivity of SiC filament also increases from 0. 745Ω~(-1)·cm~(-1) to 6. 289Ω~(-1)·cm~(-1). The real part of complex permittiv-ity of SiC woven sheet increases from 90 to 132, imaginary part from 87 to 150, respectively,and the dielectric dissipation fraction increases from 0. 95 to1.14 at the same time. The increase of the real part and imaginary part has connection with the increased density of current carrier and missed con-ductivity, respectively. The changes above are attributed to the conductivity increases of the carbon coatings on SiC fibers. The dissipation derived from direct current conductivity is the primary mecha-nism of the dissipation above all.

参考文献

[1] Jung-Hoon Oh;Kyung-Sub Oh;Chun-Gon Kim;Chang-Sun Hong .Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges[J].Composites, Part B. Engineering,2004(1):49-56.
[2] MOUCHON E;COLOMBAN P H .Advanced absorbed materials[J].Materials Science,1996,31(02):323-334.
[3] 罗发,周万城,焦桓,赵东林.SiC(N)/LAS吸波材料吸波性能研究[J].无机材料学报,2003(03):580-584.
[4] 罗发,周万城,焦桓,赵东林.高温吸波材料研究现状[J].宇航材料工艺,2002(01):8-11.
[5] 陈珂,曾海兵,胡辉.雷达隐身材料技术研究[J].现代防御技术,2005(01):58-61.
[6] 方亮,龚荣州,官建国.雷达吸波材料的现状与展望[J].武汉工业大学学报,1999(06):21-24.
[7] BO ZHANGA;JIANBAO LIA;JINGJlNG SUNA et al.Nanometer silicon carbide powder synthesis and its dielectric behavior in the GHz range[J].Journal of the European Ceramic Society,2002,22:93-99.
[8] 李轶,徐劲峰,徐政.吸波纤维研究进展[J].现代技术陶瓷,2005(01):24-29.
[9] 王军 .含过渡金属的碳化硅纤维的制备及其电磁性能[D].国防科学技术大学,1997.
[10] 宋春才;陆毅;冯春祥 .具有微波吸收功能的掺杂型碳化硅纤维的研制[J].功能材料,1997,28(06):619-623.
[11] 欧阳国恩;刘欣慰;岳曼君 .SiC-C纤维有机先驱体流变可纺性研究[J].复合材料学报,1995,12(03):46-49.
[12] 苏晓磊,罗发,李智敏,朱冬梅,周万城.化学气相沉积铝掺杂碳化硅的微波介电特性[J].功能材料,2007(11):1831-1833.
[13] 杨孚标,李永清,程海峰,车仁超,肖加余.SiC纤维的B4C涂层研究[J].功能材料,2002(03):286-287,293.
[14] 程海峰 .碳化硅短切纤维电磁特性改进研究[J].宇航材料工艺,1998,28(02):55-59.
[15] 何新波,张长瑞,周新贵,张新明,周安郴.裂解碳涂层对碳纤维增强碳化硅复合材料力学性能的影响[J].高技术通讯,2000(09):92-94.
[16] 尹洪峰,徐永东,成来飞,张立同.界面相对碳纤维增韧碳化硅复合材料性能的影响[J].硅酸盐学报,2000(01):1-5.
[17] 尹洪峰,徐永东,张立同.热解条件对热解碳沉积模式和形貌的影响[J].无机材料学报,1999(05):769-774.
[18] 杨序纲,袁象恺,王依民,王鸿华.SiC纤维增强复合材料界面微观结构的Raman光谱研究[J].宇航材料工艺,1999(05):60-62.
[19] Jean-Marie Vallerot;Xavier Bourrat;Arnaud Mouchon .Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(9):1833-1844.
[20] TUINSTRA F;KOENIG J L .Raman spectrum of graphite[J].The Journal of Chemical Physics,1970,53(03):1126-1130.
[21] 冯春祥;王军;宋永才 .掺杂法制备低电阻率SIC纤维的研究[J].功能材料,2001,10(zk):269-272.
[22] NAKAMIZO M;KAMMERECK R;WALKER P L.Laser Ramanstudies on carbons[J].Carbon,1974(12):259-265.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%