欢迎登录材料期刊网

材料期刊网

高级检索

隐身技术是现代军事装备必不可少的技术,隐身材料是现代隐身技术重要的物质基础.本文从力学性能与电磁性能的角度出发,综述了不同构成成分的纤维增强隐身材料的在国内外的发展历程与现状,指出了在隐身技术研究中可能的发展方向.

参考文献

[1] 崔东辉;朱旭宝.雷达吸波材料发展趋势[J].飞航导弹,2000(11):54-57.
[2] 谭显裕.隐身/反隐身技术发展趋势[J].激光技术,1990(04):32-33.
[3] Jaggard D.L.;Liu J.C. .Spherical chiroshield[J].Electronics Letters,1991(1):77-79.
[4] JAGGARD D L .Chiroshield:a salisbury/dellenbach shield alternative[J].Electronics Letters,1990,26(17):22-24.
[5] 刘世良.国外反隐身技术的研究及发展趋势[J].上海航天,1994(02):29.
[6] 吴明中 .雷达吸波材料的现状和发展趋势[J].,1997,28(02):26-30.
[7] 许沭华,王肖钧,张刚明,陈居伟,张昭宇.KeVlar纤维增强复合材料动态压缩力学性能实验研究[J].实验力学,2001(01):26-33.
[8] 陈利,刘景艳,马振杰,梁子青,李嘉禄.三维多向编织复合材料压缩性能的试验研究[J].固体火箭技术,2006(01):63-66.
[9] 董立民;夏源明;杨报昌 .纤维束的冲击拉伸试验研究[J].复合材料学报,1990,7(04):9-14.
[10] 汪洋,夏源明.纤维束动态拉伸力学性能的实验研究[J].材料工程,1999(12):13-15.
[11] 夏源明;杨报昌;李铭 .树脂基体及其复合材料对拉伸冲击载荷的响应[J].复合材料学报,1987,4(02):59-60.
[12] 夏源明;王兴;杨报昌 .单向玻璃纤维增强环氧树脂在冲击拉伸时的一维本构方程[J].复合材料学报,1994,11(04):110-114.
[13] T. E. Tay;H. G. Ang;V. P. W. Shim .An empirical strain rate-dependent constitutive relationship for glass-fibre reinforced epoxy and pure epoxy[J].Composite Structures,1995(4):201-210.
[14] Shah M.Z.;Simpson G. .Mechanical properties of a glass reinforced plastic naval composite material under increasing compressive strain rates[J].Materials Letters,2000(3/4):167-174.
[15] M.Z.S.Khan;G.Simpson .Resistance of glass-fibre reinforced polymer composites to increasing compressive strain rates and loading rates[J].Composites, Part A. Applied science and manufacturing,2000(1):57-67.
[16] OCHOLA R O;MARCUS K;NURICK G N et al.Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates[J].Computers and Structures,2004,63(3-4):455-467.
[17] HSIAO H M;DANIEL I M .Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading[J].Computer Science and Technology,1996,56(05):581-593.
[18] IIJIMA S .Helical microtubues of graphitic carbon[J].Nature,1991,354(6348):56.
[19] 陈军峰,徐才录,陈贵如,魏秉庆,梁吉,吴德海,毛宗强.碳纳米管表面沉积铂及其质子 交换膜燃料电池的性能[J].中国科学A辑,2001(06):529-533.
[20] EBBESEN T W;AJAYAN P M .Large-scale synthesis of carbon nanotubes[J].Nature,1992,358(6383):220-222.
[21] Ang LM.;Xu GQ.;Tung CH.;Zhao SP.;Wang JLS.;Hor TSA. .Decoration of activated carbon nanotubes with copper and nickel[J].Carbon: An International Journal Sponsored by the American Carbon Society,2000(3):363-372.
[22] Frackowiak E.;Gautier S.;Gaucher H.;Bonnamy S.;Beguin F. .Electrochemical storage of lithium multiwalled carbon nanotubes[J].Carbon: An International Journal Sponsored by the American Carbon Society,1999(1):61-69.
[23] A. C. Dillon;K. M. Jones;T. A. Bekkedahl;C. H. Kiang;D. S. Bethune;M. J. Heben .STORAGE OF HYDROGEN IN SINGLE-WALLED CARBON NANOTUBES[J].Nature,1997(6623):377-379.
[24] C. Liu;Y. Y. Fan;M. Liu .Hydrogen Storage in Singly-Walled Carbon Nanotubes at Room Temperature[J].Science,1999(5442):1127-1129.
[25] Rinzler AG;Hafner JH;Nikolaev P;Lou L;Kim SG;Tomanek D .UNRAVELING NANOTUBES - FIELD EMISSION FROM AN ATOMIC WIRE[J].Science,1995(5230):1550-1553.
[26] QIAN D;DICKEY E C .In-situ transmission electron microscopy studies of polymer-carbon nanotube composite deformation[J].Journal of Microscopy,2001,204(01):39-45.
[27] Kuzumaki T.;Ichinose H.;Ito K.;Miyazawa K. .Processing of carbon nanotube reinforced aluminum composite[J].Journal of Materials Research,1998(9):2445-2449.
[28] 陈小华,王健雄,邓福铭,李宏健,王淼,卢筱楠,彭景翠,李文铸.碳纳米管的化学镀镍研究[J].新型炭材料,2000(04):39-43.
[29] 易国军,陈小华,蒋文忠,张刚,陈传盛.碳纳米管的表面改性与镍的包覆[J].中国有色金属学报,2004(03):479-483.
[30] TREACY M M J .Flexible light-emitting diodes made from soluble conducting polymers[J].Nature,1996,381(6378):678-680.
[31] 聂海瑜.碳纳米管的应用研究进展[J].化学工业与工程技术,2004(05):34-38.
[32] Scharff P. .New carbon materials for research and technology[J].Carbon: An International Journal Sponsored by the American Carbon Society,1998(5/6):481-486.
[33] Wildoer JWG.;Venema LC.;Rinzler AG.;Smalley RE.;Dekker C. .Electronic structure of atomically resolved carbon nanotubes[J].Nature,1998(6662):59-62.
[34] J. Sandler;M. S. P. Shaffer;T. Prasse;W. Bauhofer;K. Schulte;A. H. Windle .Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J].Polymer: The International Journal for the Science and Technology of Polymers,1999(21):5967-5971.
[35] JOSE K A;VARADAN GIVEN NAME;VASUADARA V .Free-space vs.one-horn interferometer techniques for radar absorber measurements[J].Microwave Journal,1998,41(09):148-154.
[36] SMITH F C;CHAMBERS B;BENNET J C .Methodology for accurate free-space characterization of radar absorbing materials[J].IEE Proceedings:Science Meas and Technol,1994,141(06):538-546.
[37] GAO M;WANG B;YUAN J et al.Towards an intelligent CAD system for multilayer electromagnetic absorber design[J].Materials & Design,1998,19(03):113-120.
[38] 周克省,黄可龙,孔德明,尹荔松.纳米无机物/聚合物复合吸波功能材料[J].高分子材料科学与工程,2002(03):15-19.
[39] 黄祖雄,吴唯.碳纳米管在聚合物基吸波隐身复合材料上的应用[J].材料工程,2004(07):55-59.
[40] Seeger T.;Grobert N.;Terrones M.;Walton DRM.;Kroto HW. Ruhle M.;Redlich P. .SiOx-coating of carbon nanotubes at room temperature[J].Chemical Physics Letters,2001(1/2):41-46.
[41] AJAYAN P M;STEPHAN Q;COLLIEX C et al.Aligned carbon nanotube arrays formed by cutting a polymer resin nanotube composite[J].Science,1994,265(16):1212-1214.
[42] DUJARDIN E;EBBESEN T W;HIURA H .Capillarity and wetting of carbon nanotubes[J].Science,1994,265(18):1850-1851.
[43] ROBERT C.CRC handbook of physics and chemistry[M].Florida:CRC Press,1988
[44] 袁海龙,凤仪.碳纳米管的化学镀铜[J].中国有色金属学报,2004(04):665-669.
[45] 曹茂盛,高正娟,朱静.CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程,2003(02):34-36.
[46] 孙晓刚.碳纳米管吸波性能研究[J].人工晶体学报,2005(01):174-177.
[47] HONG YOUI BAE;GYEONG MAN CHOI .Electrical and reducing gas sensing properties of ZnO and ZnO-CuO thin films fabricated by spin coating method[J].Sensors and Actuators B: Chemical,1999,55(01):47-54.
[48] WANG Z L .In-situ analysis of valence conversion in transition metal oxides using electron energy-loss spectroscopy[J].Materials Today,2004,7(06):26-33.
[49] KONG X Y;DING Y;YANG R S et al.Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J].Science,2004,303(02):1348-1351.
[50] GAO P X;DING Y;MAI W J et al.Conversion of zinc oxide nanobelts into superlattice-structured nanohelices[J].Science,2005,309(21):1700-1704.
[51] Pu Xian Gao;Zhong L. Wang .Nanopropeller arrays of zinc oxide[J].Applied physics letters,2004(15):2883-2885.
[52] Xudong Wang;Christopher J. Summers;Zhong Lin Wang .Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays[J].Nano letters,2004(3):423-426.
[53] Joodong Park;Han-Ho Choi;Kerry Siebein;Rajiv K. Singh .Two-step evaporation process for formation of aligned zinc oxide nanowires[J].Journal of Crystal Growth,2003(3/4):342-348.
[54] 田雅娟,陈尔凡,程远杰,周本廉.四脚状氧化锌晶须及应用[J].硅酸盐学报,2000(02):165-168.
[55] 吕越峰;吴华武.四脚状氧化锌晶须的制备、性能及应用[J].化学通报(印刷版),1996(11):15-18.
[56] 陈尔凡,周本廉,田雅娟,程远杰.四脚状氧化锌晶须的生长习性及机理的研究[J].硅酸盐学报,2001(02):151-156.
[57] 戴英,张跃,方圆,黄秀颀,李杰.高品质四针状氧化锌晶须的结构及生长机理[J].北京科技大学学报,2002(02):200-202.
[58] 陈尔凡,田雅娟,程远杰,周本廉.四脚状氧化锌晶须的制备及微观形态研究[J].高等学校化学学报,2000(02):172-176.
[59] 赵韦人;刘德义;黄荣芳 等.无界金属圆柱介电函数的经典尺寸效应[J].金属学报,1998,34(08):819.
[60] 刘建华,孙杰,李松梅,陈冬梅.不同形貌氧化锌的微波电磁性能研究[J].北京航空航天大学学报,2004(09):822-825.
[61] Zheng Chen;Zhiwei Shan;M S Cao .Zinc oxide nanotetrapods[J].Nanotechnology,2004(3):365-369.
[62] SHI Xiao-Ling,YUAN Jie,ZHOU Wei,RONG Ji-Li,CAO Mao-Sheng.Preparation and Dielectric Properties of Nanostructured ZnO Whiskers[J].中国物理快报(英文版),2007(10):2994-2997.
[63] Cao MS;Shi XL;Fang XY;Jin HB;Hou ZL;Zhou W;Chen YJ .Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites[J].Applied physics letters,2007(20):23110-1-23110-3-0.
[64] Hai-Bo Lin;Mao-Sheng Cao;Quan-Liang Zhao .Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers[J].Scripta materialia,2008(7):780-783.
[65] Cao MS;Zhou W;Shi XL;Chen YJ .Dynamic response and reinforcement mechanism of composites embedded with tetraneedlelike ZnO nanowhiskers[J].Applied physics letters,2007(2):21912-1-21912-3-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%