欢迎登录材料期刊网

材料期刊网

高级检索

建立有效的磁滞非线性模型是超磁致伸缩材料(GMM)应用过程中的关键问题.阐述了磁滞现象的特性与产生机理,将现有的磁滞模型分为数学模型和机理模型两类,并从其内在机理、历史沿革、实现难易、适应范围与限制条件等方面对不同模型进行了综合比较评价,重点讨论了Preisach模型和J-A模型两种最具代表性的模型,并对未来磁滞建模发展的方向进行了展望.

参考文献

[1] Clark A E.Ferromagnetic material[M].Amsterdam:North-Holland Publishing Company,1980
[2] 郭东明,杨兴,贾振元,武丹.超磁致伸缩执行器在机电工程中的应用研究现状[J].中国机械工程,2001(06):724-727.
[3] 王宏,张登友,杨百炼,刘晓珍.反应堆用磁致伸缩材料设计[J].功能材料,2007(05):694-695,699.
[4] 杨亲民 .智能材料的研究与开发[J].功能材料,1999,30(06):575-581.
[5] 李欣欣,王文,陈戬恒,陈子辰.Jiles-Atherton模型的超磁致伸缩驱动器磁滞补偿控制[J].光学精密工程,2007(10):1558-1563.
[6] 贾振元,王晓煜,王福吉.超磁致伸缩执行器应力耦合磁化模型及求逆算法[J].功能材料,2007(03):377-381,385.
[7] Ewing J A.Magnetic induction in iron and other metals[M].London:Nabu press,1894
[8] Brown Jr W F.Micromagnetics[M].New York:John Wiley and Sons,Inc,1963
[9] Calkins F T .Design,analysis,and modeling of giant magnetostrictive transducers[D].Ames:Iowa State University,1997.
[10] Kellogg R A .The Delta-E effect in Terfenol-D and its application in a tunable mechanical resonator[D].Ames:Iowa State University,2000.
[11] Faidley L E;Lund B J;Flatau A B.Terfenol-D elasto-magnetic properties under varied operating conditions using hysteresis loop analysis[A].San Diego:Regelbrugge,1998:856-865.
[12] Preisach F .Uber die magnetische nachwrikung[J].Zeitschrift für Physik,1935,94:277302.
[13] Krasnosel'skii M;Pokrovskii A.Systems with hysteresis[M].Beilin:Springer-Verlag,1989
[14] Mayergoyz I D.Mathematical models of hysteresis[M].New York:springer-verlag,1991
[15] Restorff J B;Savage H T;Clark A E .Preisach modeling of hysteresis in Terfenol[J].Journal of Applied Physics,1990,67(09):5016-5018.
[16] Bergqvist A.;Engdahl G. .A stress-dependent magnetic Preisach hysteresis model[J].IEEE Transactions on Magnetics,1991(6):4796-4798.
[17] Xiaobo Tan;John S. Baras .Modeling and control of hysteresis in magnetostrictive actuators[J].Automatica,2004(9):1469-1480.
[18] 赵章荣,邬义杰,GU Xin-jian,葛荣杰,XU Jun.考虑附加涡流损失的超磁致伸缩执行器动态模型[J].中国电机工程学报,2008(24):136-140.
[19] 龚大成,唐志峰,吕福在,潘晓弘.非线性Preisach理论与超磁致伸缩执行器高阶迟滞建模[J].机械工程学报,2009(12):252-256.
[20] 贾振元,王福吉,张菊,郭丽莎.超磁致伸缩执行器磁滞非线性建模与控制[J].机械工程学报,2005(07):131-135.
[21] 唐志峰,吕福在,项占琴.超磁致伸缩微位移驱动器的非线性迟滞建模及控制方法[J].机械工程学报,2007(06):55-61.
[22] Makaveev D.;De Wulf M.;Melkebeek J.;Dupre L. .Modeling of quasistatic magnetic hysteresis with feed-forward neural networks[J].Journal of Applied Physics,2001(11 Pt.2):6737-6739.
[23] A. A. Adly;S. K. Abd-El-Hafiz .Using neural networks in the identification of Preisach-type hysteresis models[J].IEEE Transactions on Magnetics,1998(3):629-635.
[24] Xu J H.Neural network control of a piezo tool positioner[A].Vancouver:IEEE,1993:333-336.
[25] 孙 英 .超磁致伸缩致动器的神经网络控制与动态模型及实验研究[D].天津:河北工业大学,2007.
[26] Wang Xingsong;Hong H;Su Chunyi.Adaptive robust control of dynamic systems with unknown input hystere sis[A].Montreal,Canada,2003:138-142.
[27] 王湘江,王兴松.迟滞非线性系统自适应鲁棒控制[J].系统仿真学报,2010(06):1502-1507.
[28] Jiles D C;Atherton D L .Ferromagnetic hysteresis[J].IEEE Transactions on Magnetics,1983,19(05):2183-2185.
[29] Jiles D.C.;Thoelke J.B. .Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis[J].IEEE Transactions on Magnetics,1992(1):27-35.
[30] Carpenter K.H. .A differential equation approach to minor loops in the Jiles-Atherton hysteresis model[J].IEEE Transactions on Magnetics,1991(6):4404-4406.
[31] F. T. Calkins;R. C. Smith;A. B. Flatau .Energy-based hysteresis model for magnetostrictive transducers[J].IEEE Transactions on Magnetics,2000(2):429-439.
[32] 贾振元,王晓煜,王福吉.超磁致伸缩执行器的动力学参数及磁滞模型参数的辨识方法[J].机械工程学报,2007(10):9-13.
[33] 曹淑瑛,王博文,闫荣格,黄文美,翁玲.超磁致伸缩致动器的磁滞非线性动态模型[J].中国电机工程学报,2003(11):145-149.
[34] 黄文美,王博文,曹淑瑛,孙英,翁玲.计及涡流效应和应力变化的超磁致伸缩换能器的动态模型[J].中国电机工程学报,2005(16):132-136.
[35] 郑加驹,王洪礼,曹淑瑛.超磁致伸缩驱动器频率相关的动态磁滞模型[J].机械工程学报,2008(07):38-44.
[36] Ralph C. Smith;Marcelo J. Dapino;Stefan Seelecke .Free energy model for hysteresis in magnetostrictive transducers[J].Journal of Applied Physics,2003(1):458-466.
[37] 田春,汪鸿振.超磁致伸缩执行器的自由能磁滞模型的数值实现[J].机械科学与技术,2005(06):650-652.
[38] TIAN Chun,WANG Hongzhen.DYNAMIC FREE ENERGY HYSTERESIS MODEL IN MAGNETOSTRICTIVE ACTUATORS[J].机械工程学报(英文版),2006(01):85-88.
[39] Wen Y K .Method for random vibration of hysteretic systems[J].Journal of Engineering Mechanics,1976,12:249-263.
[40] 曾祥进,黄心汉,王敏.基于Dahl模型的压电陶瓷微夹钳控制研究[J].中国机械工程,2008(07):766-769.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%