欢迎登录材料期刊网

材料期刊网

高级检索

利用单铜辊甩带法制备 Fe(86-x) Zr2 Nb2 B10 Nix (x=0、1、3和5)非晶合金带材。采用 X射线衍射仪、差示扫描量热仪、振动样品磁强计以及精密磁性器件分析仪研究Ni元素对FeZrNbB合金带材的非晶形成能力和软磁性能影响。结果表明Ni元素能明显提高该体系合金的非晶形成能力,并使淬火态非晶合金带材的一级起始晶化温度提高;通过合金的退火处理,在Fe(86-x)Zr2 Nb2 B10 Nix 合金体系中含Ni元素的合金带材可以析出最小粒径为12(12.15)nm的α-Fe(a)纳米晶,获得较低的矫顽力为8.1 A/m;其中 Fe85 Zr2 Nb2 B10 Ni1非晶合金带材经过510℃保温20min热处理后可以获得较高的饱和磁感应强度为1.61T,有效磁导率提升到48.4k,矫顽力下降到8.3A/m。

Amorphous Fe(86-x)Zr2Nb2B10Nix(x=0,1,3,5)alloy ribbons were prepared by the single roller melt-spinning method.The effect of Ni addition on glass forming ability and magnetic properties of FeZrNbB alloy ribbons was investigated by X-ray diffraction (XRD),differential scanning calorimeter (DSC),vibrating sample magnetometer (VSM)and precision magnetics analyzer.It was found that the glass foming ability was im-proved and the first crystallization onset temperature (Tx1 )increase with increasing Ni addition.Theα-Fe pha-ses with grain size (D)of 12nm precipitated from alloy ribbons doped Ni,which had a lower Hc of 8.1A/m. The results of Fe85Zr2Nb2B10Ni1 ribbons annealed at 510℃ for 20min showes a higher Bs of 1.61T,effective permeability (μe)of 48.4k,and coercivity (Hc)of 8.3A/m.

参考文献

[1] Yoshizawa Y;Oguma S;Yamauchi K .New Fe-based soft magnetic composed of ultrafine grain structure[J].Journal of Applied Physics,1988,64(10):6044-6046.
[2] Herzer G. .Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets[J].IEEE Transactions on Magnetics,1990(5):1397-1402.
[3] Y. Q. WU;T. BITOH;K. HONO .MICROSTRUCTURE AND PROPERTIES OF NANOCRYSTALLINE Fe-Zr-Nb-B SOFT MAGNETIC ALLOYS WITH LOW MAGNETOSTRICTION[J].Acta materialia,2001(19):4069-4077.
[4] Makino A;Inoue A;Masumoto T .Nanocrystalline soft magnetic Fe-M-B(M=Zr,Hf,Nb)alloys produced by crystallization of amorphous phase[J].Materials Trans-actions,1995,36(07):924-938.
[5] 陶平均,杨元政,董振江,白晓军,陈先朝,谢至薇.FeCoBSiNb (Y)合金的玻璃形成能力及磁性能研究[J].功能材料,2011(06):976-979.
[6] Suzuki K;Makino A;Kataoka N et al.High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B and Fe-Zr-B-M(M=Transition Metal)alloys with nanoscale grain size[J].Materials Transactions,1991,32(01):93-102.
[7] Kim K.S.;Driouch L. .Magnetic properties of glassy Fe/sub 91-x/Zr/sub 7/B/sub 2/Ni/sub x/ (x=0, 5, 10, 15) alloys[J].IEEE Transactions on Magnetics,1996(5):5148-5150.
[8] Seong-Cho Yu;Soo-Hyung Lee .Magnetic properties of the amorphous Fe-Zr-B-Ni alloys annealed below the crystallization temperature[J].IEEE Transactions on Magnetics,1995(6):3907-3909.
[9] 杨元政,赵德强,仇在宏,陈小祝,谢致薇,匡同春,白晓军.Fe60Co8Zr10Mo5W2B15块体非晶合金的形成及热处理对性能的影响研究[J].功能材料,2005(11):1682-1684.
[10] Kong, L.H.;Gao, Y.L.;Song, T.T.;Zhai, Q.J. .Structure and magnetic properties of Nb-doped FeZrB soft magnetic alloys[J].Journal of Magnetism and Magnetic Materials,2011(16):2165-2169.
[11] Fan, X.D.;Men, H.;Ma, A.B.;Shen, B.L. .Soft magnetic properties in Fe_(84-x)B_(10)C_6Cu_x nanocrystalline alloys[J].Journal of Magnetism and Magnetic Materials,2013(1):22-27.
[12] Kong F L;He M;Liu T C et al.Effect of P to B con-centration ratio on soft magnetic properties in FeSiBPCu nanocrystalline alloys[J].Journal of Applied Physics,2012,111(07):1-8.
[13] Sybille F;Giselher H .Random and uniform anisotropy in soft magnetic nanocrystalline[J].Journal of Magnetism and Magnetic Materials,2010,322(9-12):1511-1514.
[14] Herzer G .Anisotropies in soft magnetic nanocrystalline alloys[J].Journal of Magnetism and Magnetic Materials,2005(2):99-106.
[15] Suzuki K;Cadogan J M .The effect of the spontaneous magnetization in the grain boundary region on the mag-netic softness of nanocrystalline materials[J].Journal of Applied Physics,1999,85(05):4400-4402.
[16] Makino A;Men H;Kubota T et al.FeSiBPCu nano-crystalline soft magnetic alloys with high Bs of 1.9T produced by crystalline hetero-amorphous phase[J].Materials Transactions,2009,50(01):204-209.
[17] Kong F;Wang A;Fan X et al.High Bs Fe(84-x)Si4 B4 P4 Cux(x=0-1.5)nanocrystalline alloys with ex-cellent magnetic softness[J].Journal of Applied Phys-ics,2011,109(07):1-3.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%