欢迎登录材料期刊网

材料期刊网

高级检索

以纳米金红石型 TiO2为钛源,采用水热法制备钛酸纳米晶须,用 XRD、FT-IR、SEM及 TEM对钛酸纳米晶须的形貌及结构进行表征.结果表明在180℃水热条件下成功合成出钛酸纳米晶须.采用静态批式法研究了接触时间、p H 值、离子强度、Th (Ⅳ)初始浓度、温度对Th(Ⅳ)在钛酸纳米晶须上的吸附影响.结果表明,pH 值对 Th(Ⅳ)在钛酸纳米晶须上的吸附有显著影响,而离子强度对吸附的影响相对较弱;吸附过程符合准二级动力学方程;吸附等温线符合Langmuir和 Freundlich 等温模型;通过热力学数据ΔG0、ΔH 0和ΔS0分析发现,Th(Ⅳ)在钛酸纳米晶须上的吸附是一个吸热且自发的过程,升高温度有利于Th(Ⅳ)在钛酸纳米晶须上的吸附.Th(Ⅳ)在钛酸纳米晶须上的吸附主要以化学吸附或表面络合为主.

Titanate nanowhiskers have been synthesized by a hydrothermal method using titanium dioxide rutile as titanium source.The determination of the structure and morphology was characterized by XRD,FT-IR, SEM and TEM.The results indicate that the titanate nanowhiskers successfully synthesized under hydrothermal conditions of 180 ℃.The adsorption of Th(Ⅳ)on titanate nanowhiskers was studied as a function of contact time,pH values,ionic strength,Th(Ⅳ)initial concentration and temperature under ambient conditions using batch technique.The results indicate that adsorption of Th(Ⅳ)on titanate nanowhiskers was strongly depend-ent on pH values,but weakly dependent on ionic strength;adsorption kinetics of Th(Ⅳ)on titanate nanowhis-kers was in accordance with pseudo second order kinetic model;the adsorption isotherm model consistent with Langmuir isotherm and Freundlich isotherm model.ΔG0 ,ΔH 0 andΔS0 free energy were calculated from exper-imental data,the results indicate that the adsorption of Th(Ⅳ)on titanate nanowhiskers was a spontaneous and endothermic process, and increases with increasing temperature.The adsorption of Th (Ⅳ) on titanate nanowhiskers was mainly dominated by surface complexation.

参考文献

[1] Vearrier D;Curtis JA;Greenberg MI .Technologically enhanced naturally occurring radioactive materials.[J].Clinical toxicology: the official journal of the American Academy of Clinical Toxicology and European Association of Poisons Centres and Clinical Toxicologists,2009(5):393-406.
[2] V. Hoellriegl;M. Greiter;A. Giussani;U. Gerstmann;B. Michalke;P. Roth;U. Oeh .Observation of changes in urinary excretion of thorium in humans following ingestion of a therapeutic soil[J].Journal of environmental radioactivity,2007(2/3):149-160.
[3] 蔡龙飞,陈国树.凹凸棒石粘土动态法分离钍(Ⅳ)的研究[J].江西科学,2003(02):84-87.
[4] 刘建亮,罗明标,平爱东,蒋小辉,袁自遵.稀土精矿中钍的提取工艺研究进展[J].稀有金属,2012(04):651-658.
[5] 潘多强,范桥辉,丁克非,李平,路艳,于涛,许江,吴王锁.Th(Ⅳ)在凹凸棒石表面的吸附机理[J].中国科学(化学),2011(06):1081-1092.
[6] Guo ZJ;Yu XM;Guo FH;Tao ZY .Th(IV) adsorption on alumina: Effects of contact time, pH, ionic strength and phosphate[J].Journal of Colloid and Interface Science,2005(1):14-20.
[7] Zuo L M;Yu S M;Zhou H et al.Th(Ⅳ)adsorption on mesoporous molecular sieves:effects of contact time,sol-id content,pH,ionic strength,foreign ions and tempera-ture[J].Journal of Radioanalytical and Nuclear Chemis-try,2011,288(02):379-387.
[8] Song X P;Wang Y J;Cai J J .Sorption of Th(Ⅳ)from aqueous solution to GMZ bentonite:effect of pH,ionic strength,fulvic acid and electrolyte ions[J].Journal of Radioanalytical and Nuclear Chemistry,2012,295(02):991-1000.
[9] Tan X L;Wang X K;Chen C L et al.Effect of soil hu-mic and fulvic acids,pH and ionic strength on Th(Ⅳ)sorption to TiO2 nanoparticles[J].Applied Radiation and Isotopes,2007,65(04):375-381.
[10] Tan X L;Wang X K;Fang M et al.Sorption and de-sorption of Th(Ⅳ)on nanoparticles of anatase studied by batch and spectroscopy methods[J].Colloids and Sur-faces A:Physicochem Eng Aspects,2007,296(1-3):109-116.
[11] ?sthols E .Thorium sorption on amorphous silica[J].Geochimica et Cosmochimica Acta,1995,59(07):1235-1249.
[12] C. L. Chen;X. L. Li;X. K. Wang .Application of oxidized multi-wall carbon nanotubes for Th(IV) adsorption[J].Radiochimica Acta: International Journal for Chemical Aspects of Nuclear Science and Technology,2007(5):261-266.
[13] Q. Chen;L. -M. Peng .Structure and applications of titanate and related nanostructures[J].International Journal of Nanotechnology,2007(1/2):44-65.
[14] Wang T;Liu W;Xiong L et al.Influence of pH,ionic strength and humic acid on competitive adsorption of Pb(Ⅱ),Cd(Ⅱ)and Cr(Ⅲ)onto titanate nanotubes[J].Chemical Engineering Journal,2013,215-216:366-374.
[15] 常阳,张麟熹,罗明标,廖桢葳,陈中胜.钛纳米管的制备和对铀离子的吸附[J].材料研究学报,2010(04):424-428.
[16] 张麟熹,孙玉珍,罗明标,刘淑娟,胡军.磷酸三丁酯修饰Ti纳米晶须应用于吸附铀酰离子[J].复合材料学报,2011(03):96-102.
[17] 盛国栋,杨世通,赵东林,盛江,王祥科.静态法和EXAFS技术研究Eu(Ⅲ)在钛酸纳米管上的吸附行为和微观机制[J].中国科学(化学),2012(01):60-73.
[18] Guo, G.-L.;Luo, M.-B.;Xu, J.-J.;Wang, T.-X.;Hua, R.;Sun, Y.-Z. .Separation and continuous determination of the light rare earth elements and thorium in Baotou Iron Ore by a micro-column[J].Journal of Radioanalytical and Nuclear Chemistry: An International Journal Dealing with All Aspects and Applications of Nuclear Chemistry,2009(3):647-651.
[19] 龚强,江志东,田峰,蒋淇忠,马紫峰.水热条件下钛酸钠盐纳米晶须与纳米管的选择制备[J].材料科学与工程学报,2007(01):43-47,78.
[20] Ho Y S;McKay G .Pseudo-second order model for sorp-tion processes[J].Process Biochemistry,1999,34(05):451-465.
[21] Baeyens B;Bradbury M H .A mechanistic description of Ni and Zn adsorption on Na-montmorillonite [J].Part I:titration and sorp-tion measurements[J].Journal of Con-taminant Hydrology,1997,27(3-4):199-222.
[22] Wang X K;Chen C L;Du J Z et al.Effect of pH and aging time on the kinetic dissociation of 243 Am(Ⅲ)from humic acid coatedγ-Al2 O3:a chelating resin exchange study[J].Environmental Scienc Technology,2005,39(18):70-84.
[23] Langmuir I .The constitution and fundamental properties of solids and liquids[J].Part I Solids Journal of the American Chemical Society,1916,38(11):2221-2295.
[24] Freundlich H M F .Over the Adsorption in Solution[J].Zeitschrift für Physikalische Chemie,1906,57:385-471.
[25] Kilislioglu A;Bilgin B .Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin.[J].Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine,2003(2):155-160.
[26] Shirvani M;Shariatmadari H;Kalbasi M;Nourbakhsh F;Najafi B .Sorption of cadmium on palygorskite, sepiolite and calcite: Equilibria and organic ligand affected kinetics[J].Colloids and Surfaces, A. Physicochemical and Engineering Aspects,2006(1/3):182-190.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%