欢迎登录材料期刊网

材料期刊网

高级检索

基于密度泛函理论的第一性原理平面波超软赝势方法研究了纯 TiO2、S 和 La 分别单掺杂及共掺杂锐钛矿相TiO2的晶体结构、电子结构、光学性质及带边位置,结果表明,S掺杂后TiO2的晶格常数、原子间的键长和原子电荷都发生了变化,导致掺杂后的八面体偶极矩增加,从而有利于光生电子-空穴对的分离,提高TiO2的光催化性能;S掺杂TiO2禁带中出现杂质能级,从而将 TiO2的光谱响应红移至可见光区;La掺杂TiO2杂质能级出现在导带而非禁带中,带隙有所减小,吸收光谱的阈值波长发生了一定的红移;而S、La共掺杂TiO2的光谱响应范围向可见光区明显拓展,且氧化还原能力增强,因此 S、La 共掺杂可显著提高TiO2光催化性能。

The crystal structure,electronic structure,optical properties and the band edge position of pure ana-tase TiO2 and anatase TiO2 with S,La single doping and co-doping were investigated by the first principles plane waves ultra-soft pseudopotential.The results showed that crystal lattice constants and bond lengths be-tween atoms and atomic charges of the doped TiO2 were changed,which caused the surface of the body eight di-pole moment increase.This method was favorable for effective separation of photo-generated electron-hole pairs and would improve the photocatalytic performance of TiO2 .The band gap appears impurity level when S was doped in TiO2 so that the absorption threshold wavelength red shifts to visible light region.However,impurity level appeared in the conduction band when La was doped in TiO2 rather than the band gap,with band gap de-creasing,the absorption spectrum threshold wavelength red shifted a little.Spectral response range extended to visible light when S and La were co-doped in TiO2 ,which resulted in oxidation and reduction was enhanced and the photocatalytic efficiency was improved.

参考文献

[1] Yamashita H;Ichihashi Y;Anpo M .Photocatalytic de-composition of NO at 275 K on titanium oxides included within Y-zeolite cavities:the structure and role of the ac-tive sites[J].The Journal of Chemical Physics,1996,100(40):16041-16044.
[2] Li X P;Xu B K;Liu G F et al.The research and develop-ment of photocatalytic degradation of organic contami-nant over nanosized TiO2 in water[J].Journal of Func-tional Materials,1999,30(03):242-245.
[3] Wang R.;Fujishima A.;Chikuni M.;Kojima E.;Kitamura A. Shimohigoshi M.;Watanabe T.;Hashimoto K. .Photogeneration of highly amphiphilic TiO2 surfaces[J].Advanced Materials,1998(2):135-13+.
[4] Okamoto K;Yamamoto Y;Tanaka H et al.Heterogene-ous photocatalytic decomposition of phenol over TiO2 powder[J].Bulletin of the Chemical Society of Japan,1985,58:2015-2022.
[5] Zhang Q;Gao L;Guo J .Effects of calcination on photo-catalytic properties of nanosized TiO2 powders prepared by TiC14 hydrolysis[J].Applied Catalysis B:Environ-mental,2000,26:207-215.
[6] Crisan M;Braileanu A;Raileanu M;Zaharescu M;Crisan D;Dragan N;Anastasescu M;Ianculescu A;Nitoi I;Marinescu VE .Sol-gel S-doped TiO2 materials for environmental protection[J].Journal of Non-Crystalline Solids: A Journal Devoted to Oxide, Halide, Chalcogenide and Metallic Glasses, Amorphous Semiconductors, Non-Crystalline Films, Glass-Ceramics and Glassy Composites,2008(2/9):705-711.
[7] Qiu L F;Shan M J;Yu J et al.Research on photocata-lytic degradation kinetics of S-doped TiO2 to phenol[J].Advanced Materials Research,2013,676:158-161.
[8] Xu JJ;Ao YH;Fu DG;Yuan CW .A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity[J].Journal of Colloid and Interface Science,2008(2):447-451.
[9] Zhongqing Liu;Yanping Zhou;Zhenghua Li;Yichao Wang;Changchun Ge .Enhanced photocatalytic activity of (La, N) co-doped TiO_2 by TiCl_4 sol-gel autoigniting synthesis[J].Journal of University of Science and Technology Beijing,2007(6):552-557.
[10] Liu, C;Tang, XH;Mo, CH;Qiang, Z .Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium[J].Journal of Solid State Chemistry,2008(4):913-919.
[11] Vanderbilt D .Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Physical Review B,1990,41:7892-7895.
[12] Cui X Y;Medvedeva J E;Delley B et al.Role of embed-ded clustering in dilute magnetic semeconductors:Cr doped GaN[J].Physical Review Letters,2005,95:256404.
[13] Sato J;Kobayashi H;Inoue Y .Photocatalytic activity for water decomposition of indates with octahedrally coordi-nated d10 configuration.Ⅱ.roles of geometric and elec-tronic structures[J].Physical Chemistry B,2003,107:7970.
[14] Photocatalytic behavior of heavy La-doped TiO_2 films deposited by pulsed laser deposition using non-sintered target[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2009(24):9688.
[15] 钱斯文,王智宇,王民权.La3+掺杂对纳米TiO2微观结构及光催化性能的影响[J].材料科学与工程学报,2003(01):48-52.
[16] Mingyang Xing;Jinlong Zhang;Feng Chen .New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2009(3/4):563-569.
[17] Perdew J P;Mel L .Physical content of the exact Kohn-Sham orbital energies:band gaps and derivative discont-nuities[J].Physical Review Letters,1983,51:1884.
[18] Minoura H;Nasu M;Takahashi Y .Comparative studies of photoelectrochemical behavior of rutile and anatase electrodes prepared by OMCVD technique[J].Berichte der Bunsen-Gesellschaft,1985,89(10):1064.
[19] Wu Chen;Li Yuexiang;Peng Shaoqin .Preparation of TiO2 co-doped with S and RE and its performance for photocatalytic hydrogen evolution under visible light ir-radiation[J].Material Review,2011,25(10):66-68.
[20] 吴琛,李越湘,彭绍琴,吕功煊,李树本.S、La3+共掺杂TiO2的制备及其可见光下光催化制氢性能[J].西安交通大学学报,2008(07):904-908,918.
[21] Mulliken R S .Electronic population analysis on LCAO-MO molecular wave functions I[J].CHEMICAL PHYSICS,1955,23:1833.
[22] Peng Liping;Xu Ling;Yi Jianwu .First-principles study the optical properties of anatase TiO2 by N-doping[J].Journal of Physics,2007,56:1585-1589.
[23] Wu Chen .The research of preparation and performance of rare earth and sulfur co-doped TiO2 photocatalyst[D].Nanchang:Nanchang University,2007.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%