欢迎登录材料期刊网

材料期刊网

高级检索

以电化学改性和化学改性的碳纤维(CF)为载体制备了负载铱催化剂,通过考察催化剂在甲醇低压羰基化合成醋酸反应中的催化性能,研究了 CF 表面处理条件对负载铱催化剂性能的影响.XPS测试结果表明,阳极氧化后碳纤维表面出现 O、N 元素,氧化时间由2 min增加到5 min,O/N原子比例提高,在随后的负载铱催化剂中,铱的负载量由2.17%增加到4.88%,且双齿配位铱的比例较单齿配位铱增加,对醋酸的选择性由20%提高到30%.对阳极氧化后的CF,分别通过表面羟基缩合引入具有配位基团的 N-(β-氨乙基)-γ-氨丙基甲基二甲氧基硅烷后,由于配位基团数量的增加,铱的负载量分别提高到4.49%和6.43%,同时,单齿配位铱/双齿配位铱的比例增大,由于其分子链结构的柔性,明显改善了固载铱的化学微环境,催化剂对醋酸的选择性分别提高到72.5%和77.8%,表现出良好的催化活性和选择性.

Carbon fiber (CF)modified by anodizing (CF-Ox)and silanization (CF-Si)were applied for supported iridium catalyst.The effects of CF modification condition on the performances of the supported iridium catalysts were investigated by studying its catalytic activities in the methanol carbonylation reaction.The loading amount of Ir on CF-Ox was 2.17% and 4.88% for anodizing time of 2 and 5 min respectively,the X-ray photoelectron spectroscopy results indicated that oxygen and nitrogen were introduced to CF surface after anodizing (CF-ox). The oxygen/nitrogen atomic ratio enhanced as the anodizing time from 2 to 5 min,subsequently,the loading amount of Ir increased from 2.17% to 4.88% in the supported iridium catalyst.Comparing to the monodentate ligand iridium,the proportion of bidentate ligand iridium was increased,and resulted in the increase of acetic acid selectivity from 20% to 30%.For the 2 and 5 min anodized CF,after introducing N-(β-aminoethyl)-γ-am-monia propyl methyl dimethoxy silane(CF-Si)which have coordinating groups by the surface hydroxyl conden-sation respectively,the loading amount of Ir increased to 4.49% and 6.43% respectively,while the ratio of mo-nodentated iridium/bidentate iridium increased.The grafted silane molecular provids CF surface with a soluble soft chain of coordination sites,which contributed to the increase of Ir loading amount and improving the chemi-cal environment for coordinated iridium.Consequently,acetic acid selectivity increased to 72.5% and 77.8%.

参考文献

[1] Bruce C G;Helmut K.Advances in catalysis[M].Bei-jing:Science Press,2012:1-45.
[2] Howard M J;Jones M D;Roberts M S et al.C1to ace-tyls:catalysis and process[J].Catalysis Today,1993,18:325-354.
[3] Sunley G J;Watson D J .High productivity methanol car-bonylation catalysis using the cativa TM process for the manufacture of acetic acid[J].Catalysis Today,2000,58:293-307.
[4] Bartish C M;Hayes L J .Heterogeneous catalyst supports[P].US:4,325,834,1982.
[5] De Blasio N.;Tempesti E.;Mazzocchia C.;Cole-Hamilton DJ.;Wright MR. .The relative importance of heterogeneous and homogeneous methanol carbonylation using supported rhodium catalysts in the liquid phase[J].Journal of Organometallic Chemistry,1998(1/2):229-234.
[6] Ritter G;Luft G .Synthesis of acetic-anhydride by gas-phase carbonylation over heterogenous transition-metal catalysts[J].Chemie Ingenieur Technik,1987,59(06):485-486.
[7] Teresa Blasco;Mercedes Boronat;Patricia Concepción;Avelino Corma;David Law;Jose Alejandro Vidal-Moya .Carbonylation of Methanol on Metal-Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center[J].Angewandte Chemie,2007(21):3938-3941.
[8] Mercedes Boronat;Cristina Martnez-Snchez;David Law;Avelino Corma .Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO[J].Journal of the American Chemical Society,2008(48):16316-16323.
[9] G. Ormsby;J.S.J. Hargreaves;E.J. Ditzel .A methanol-only route to acetic acid[J].Catalysis Communications,2009(9):1292-1295.
[10] Anders Riisager;Betina Jergensen;Peter Wasserscheid;Rasmus Fehrmann .First application of supported ionic liquid phase (SILP)catalysis for continuous methanol carbonylation[J].Chemical communications,2006(9):994-996.
[11] Shufeng Zhang;Cunyue Guo;Qingli Qian .Synthesis of acetic acid and acetic anhydride from methanol carbonylation with polymer supported rhodium catalyst[J].Catalysis Communications,2008(5):853-858.
[12] Pan Pinglai;Liu Zhongyang;Huang Maokai et al.Co-polymer-transition metal complexes for carbonylation of methanol to acetic acid and acetic anhydride[J].Journal of Functional Polymers,1996,9:25-30.
[13] 刘玲,许宝华,曹宏兵,钱庆利,李峰波,闫芳,袁国卿.多相高分子镍配合物催化甲醇羰基化反应研究[J].分子催化,2007(01):54-57.
[14] Drgo R S;Nyberg E D;A'mma A E .Ionic attachment as a feasible approach to heterogenizing anionic solution catalysts carbonylation of methanol[J].Inorganic Chemistry,1981,20(03):641-644.
[15] 姚玉元,盛凤翔,吴熊平,吕汪洋,陈文兴.活性碳纤维负载钴酞菁催化氧化2-巯基乙醇的研究[J].功能材料,2011(12):2171-2175,2180.
[16] 张碧桃,杨世源,王军霞,梁晓峰,史红彬,马寒冰.化学接枝马来酸酐对碳纤维结构的影响[J].功能材料,2011(08):1407-1409,1414.
[17] Momma T;Liu X J;Osaka T et al.Electrochemical modification of actic carbon fiber electrode and its appli-cation to double-layer capacitor[J].Journal of Power Sources,1996,60:249-253.
[18] Ishifune M;Suzuki R;Mima Y et al.Novel electro-chemical surface modification methanol of carbon fiber and its utilization to the preparation of functional elec-trode[J].Electrochimica Acta,2005,51:14-22.
[19] 郭云霞,刘杰,梁节英.电化学改性PAN基碳纤维表面及其机理探析[J].无机材料学报,2009(04):853-858.
[20] Harold S K;Louis F F .Methyl iodide[J].Organic Syntheses Collect,1943,2:399.
[21] Bassetti M.;Capone A.;Mastrofrancesco L.;Salamone M. .Oxidative addition of methyl iodide and CO migratory insertion in a cationic rhodium complex of a S,N,S tridentate ligand[J].Organometallics,2003(12):2535-2538.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%