基于元胞自动机法,结合 Moore 型邻居定义和晶粒生长理论,建立了增强相颗粒 SiC 对镁合金激光熔注中表层316L不锈钢晶粒生长的影响模型,模型考虑了晶界迁移率和晶界能等因素,实现了不同增强相颗粒体积分数和颗粒尺寸对晶粒生长影响的计算机模拟.结果表明,所建立的模型能较好的模拟晶粒生长过程,所得晶粒生长指数为0.42;增强相颗粒体积分数含量越高,晶粒生长越慢,晶粒尺寸越小;增强相颗粒尺寸越小,晶粒生长的越慢,晶粒尺寸越小,组织越均匀.
Based on the cellular automaton method,the definition of Moore neighbor type and the grain growth theory,a model of simulation for the grain growth process was established,which simulated the influence of the SiC reinforcement particles and 316L stainless steel reinforced the surface of magnesium alloy by laser melt inj ection.Many factors such as grain boundary mobility and grain boundary energy were considered in the mod-el.Simulated the influence of different volume fraction and size of reinforcement particles on the grain growth process were obtained.The results show that:the grain growth process can be simulated very well by the meth-od,the grain growth index can be obtained as 0.42;the higher volume fraction of the particles,the slower the speed of the grain growth,the smaller grain size;the smaller the particles size is,the slower the grain grows, the smaller grain size and the microstructure is more uniform.
参考文献
[1] | 罗新民,韩光田,杨坤,陈康敏,张永康,任旭东,罗开玉.304奥氏体不锈钢激光冲击表面改性组织热致回归的微观机制[J].中国激光,2013(02):104-110. |
[2] | 应小东,李午申,冯灵芝.激光表面改性技术及国内外发展现状[J].焊接,2003(01):5-8. |
[3] | 肖红军,彭云,马成勇,田志凌.激光表面改性[J].表面技术,2005(05):10-12. |
[4] | A. Calleja;I. Tabernero;A. Fernandez;A. Celaya;A. Lamikiz;L.N. Lopez de Lacalle .Improvement of strategies and parameters for multi-axis laser cladding operations[J].Optics and Lasers in Engineering,2014(May):113-120. |
[5] | O. Verezub;Z. Kalazi;A. Sytcheva;L. Kuzsella;G. Buza;N. V. Verezub;A. Fedorov;G. Kaptay .Performance of a cutting tool made of steel matrix surface nano-composite produced by in situ laser melt injection technology[J].Journal of Materials Processing Technology,2011(4):750-758. |
[6] | 谭友宏,刘敏,马文有.激光表面合金化的研究进展[J].材料研究与应用,2012(02):96-99. |
[7] | 葛茂忠,张永康,项建云.AZ31B镁合金激光冲击强化及抗应力腐蚀研究[J].中国激光,2010(11):2925-2930. |
[8] | Abboud J H;West D R F .Microstructure of titanium in-jected with SiC particles by laser processing[J].Journal of Materials Science Letters,1991,10(19):1149-1152. |
[9] | 刘德健,李福泉,陈彦宾,李俐群.激光熔注法制备WCp/Ti-6Al-4V梯度复合材料层[J].稀有金属材料与工程,2008(10):1790-1794. |
[10] | Liu Xiaoya;Wang Xin;Sun Hongfei et al.MC simula-tion in microstructure evolution and grain growth during desorption-recombination processing of NdFeB alloy[J].Transacfions of Nonferrous Metals Society of China,2011,21:s412-s416. |
[11] | Fei Chen;Ke Qi;Zhenshan Cui;Xinmin Lai.Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method[J].Computational Materials Science,2014:331-340. |
[12] | Jamshidian M;Rabczuk T .Phase field modeling of stressed grain growth:analytical study and the effect of microstructural length scale[J].Journal of Computa-tional Physics,2014,261:23-35. |
[13] | 柯常波,张新平.第二相颗粒对多晶材料晶粒生长影响的元胞自动机(CA)模拟[J].中国有色金属学报,2009(12):2173-2178. |
[14] | Y. Liu;T. Baudin;R. Penelle .Simulation of normal grain growth by cellular automata[J].Scripta materialia,1996(11):1679-1683. |
[15] | 关小军,焦宪友,周家娟,张继祥,刘运腾,申孝民,麻晓飞.单一晶粒长大过程的元胞自动机模拟[J].中国有色金属学报,2007(05):699-703. |
[16] | MA Xiao-fei,关小军,LIU Yun-teng,申孝民,WANG Li-jun,宋述同,ZENG Qing-kai.不同尺寸二相粒子材料晶粒长大的元胞自动机仿真[J].中国有色金属学报,2008(07):1305-1310. |
[17] | 熊光耀,余梦,麻春英,赵龙志.激光合金化中SiC颗粒对镁合金热影响区晶粒生长的CA模拟研究[J].功能材料,2013(01):43-46. |
[18] | Holm E A;Glazier J A;Srolovitz D J et al.Effect of lattice anisotropy and temperature on domain growth in the two-dimensional potts mode[J].Physical Review A,1991,43(06):2662-2668. |
[19] | Song Xiaoyan;Liu Guoquan;Gu Nanju .Computer sim-ulation of the influence of the second-phase particle size on grain growth[J].ACTA METALLURGICA SINICA,1996,3 5(06):565-568. |
[20] | Shengfeng Zhou;Xiaoyan Zeng .Growth characteristics and mechanism of carbides precipitated in WC–Fe composite coatings by laser induction hybrid rapid cladding[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2010(2):685-691. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%