欢迎登录材料期刊网

材料期刊网

高级检索

采用溶剂热法制备出花状微米颗粒。采用SEM,TEM,XRD,FT-IR 等方法分析颗粒形貌及成分。结果表明,花状颗粒为丙三醇基化合物,其表观直径在2~3μm 之间,表面由次级的刺状结构组成。分别以花状微米颗粒和光滑球状 TiO 2颗粒为分散相制备电流变液,并测试其电流变性能和沉降稳定性。实验结果表明,在相同电场强度下,花状颗粒电流变液的剪切屈服强度明显高于光滑球状颗粒电流变液,但漏电流密度远小于光滑球状颗粒电流变液;静置12 d,花状颗粒电流变液的抗沉降率较之光滑球状颗粒电流变液有显著提高。花状颗粒特有的形貌是其具有优异电流变性能和沉降稳定性的主要原因。

Flower-like microparticles were synthesized by a simple solvothermal method.The morphology and structure of the particles were characterized by scanning electron microscopy(SEM),transmission electron mi-croscopy(TEM),X-ray diffraction(XRD)and infrared spectroscopy(FT-IR).The results showed that the flow-er-like particles are titanium glycerolate phase,and present secondary thorn structure on their surface.The di-ameter of flower-like particles ranges from 2μm to 3μm.Two electrorheological(ER)fluids were fabricated by dispersing the flower-like particles and smooth spherical particles,the composition of which was TiO 2 ,in sili-cone oil.The electrorheological behavior and sedimentation stability was tested.The results indicated that at the same electric field levels,the flower-like particles-based ER fluid presents higher yield stress and lower current density than the smooth spherical particles-based one.Furthermore,after 12 days’setting without disturb,the sedimentation stability of the flower-like particles-based ER fluid was much better than that of the smooth spherical particles-based material.The specific morphology of the flower-like particles may be the main reason for the significant ER effect and good sedimentation stability.

参考文献

[1] Zhao X P.Smart soft materials tuned by electric fields[M].北京:科学出版社,2011
[2] Block H;Kelly J;Qin A .Materials and mechanisms in electrorheology[J].LANGMUIR,1990,6(01):6-14.
[3] Weijia Wen;Xianxiang Huang;Shihe Yang;Lunquan Lu;Ping Sheng .The giant electrorheological effect in suspensions of nanoparticles[J].Nature materials,2003(11):727-730.
[4] Wu Q;Zhao BY;Fang C;Hu KA .An enhanced polarization mechanism for the metal cations modified amorphous TiO2 based electrorheological materials[J].The European physical journal, E. Soft matter,2005(1):63-67.
[5] Li J;Gong X;Chen S et al.Giant electrorheological fluid comprising nanoparticles:carbon nanotube composite[J].Applied Physics A(Materials Science and Processing),2010,107:093507.
[6] Lu Y;Shen R;Wang XZ;Sun G;Lu KQ .The synthesis and electrorheological effect of a strontium titanyl oxalate suspension[J].Smart Materials & Structures,2009(2):025012-1-025012-4-0.
[7] C. Mavroidis .Development of advanced actuators using shape memory alloys and electrorheological fluids[J].Research in nondestructive evaluation: a journal of the American Society for Nondestructive Testing,2002(1):1-32.
[8] Yin JB.;Zhao XP. .Preparation and electrorheological activity of mesoporous rare-earth-doped TiO2[J].Chemistry of Materials,2002(11):4633-4640.
[9] Jian B.Yin;Xiao P.Zhao .Preparation and Enhanced Electrorheological Activity of TiO_2 Doped with Chromium Ion[J].Chemistry of Materials,2004(2):321-328.
[10] Cao JG;Shen M;Zhou LW .Preparation and electrorheological properties of triethanolamine-modified TiO2[J].International Journal of Quantum Chemistry,2006(5):1565-1568.
[11] 刘秧生,官建国,马会茹.聚苯胺修饰草酸氧钛钡电流变性能的研究[J].功能材料,2008(11):1832-1834.
[12] 涂慧婕,赵红,董旭峰,谭锁奎,纪松,齐民,陶万勇.SDBS改性丙三醇氧钛颗粒的电流变性能研究[J].功能材料,2014(04):4030-4034.
[13] Weijia Wen;Xianxiang Huang;Ping Sheng .Particle size scaling of the giant electrorheological effect[J].Applied physics letters,2004(2):299-301.
[14] Jianbo Yin;Xiaopeng Zhao .Titanate nano-whisker electrorheological fluid with high suspended stability and ER activity[J].Nanotechnology,2006(1):192-196.
[15] Yin JB.;Zhao XP. .Wormhole-like mesoporous Ce-doped TiO2: a new electrorheological material with high activity[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2003(4):689-695.
[16] Wang B X;Zhao X P .Wettability of bionic nanopapilla particles and their high electrorheology activity[J].Ad-vanced Functional Materials,2005,1 5(11):1815-1820.
[17] Wang Z B;Song X F;Wang B X et al.Bionic cactus-like titanium oxide microspheres and its smart electro-rheological activity[J].CHEMICAL ENGINEERING JOURNAL,2014,256:268-279.
[18] Li W H;Zhang X Z .The effect of friction on magneto-rheological fluids[J].KOREA-AUSTRALIA RHEOLOGY JOURNAL,2008,20(02):45-50.
[19] Orellana, C.S.;He, J.;Jaeger, H.M. .Electrorheological response of dense strontium titanyl oxalate suspensions[J].Soft matter,2011(18):8023-8029.
[20] Tian G H;Chen Y J;Zhou W et al.3D hierarchical flower-like TiO 2nanostructure:morphology control andits photocatalytic property[J].Cryst Eng Comm,2011,13(08):2994-3000.
[21] Xu L;Tian WJ;Wu XF;Cao JG;Zhou LW;Huang JP;Gu GQ .Polar-molecules-driven enhanced colloidal electrostatic interactions and their applications in achieving high active electrorheological materials[J].Journal of Materials Research,2008(2):409-417.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%