欢迎登录材料期刊网

材料期刊网

高级检索

采用水热合成法制备TiO2纳米管(TiNTs)和纳米片(TiNSs),以不同浓度比将两种纳米颗粒分散在水中形成水基混合纳米流体,研究了纳米流体总浓度和两种纳米颗粒浓度比对混合纳米流体稳定性的影响.通过纳米颗粒沉降高度随时间的变化计算了纳米颗粒的相对沉降速率,并用沉降速率评价了纳米流体的稳定性.结果显示,纳米流体总浓度越大,纳米颗粒沉降速率越小,纳米流体越稳定;总浓度相同时,在TiNTs浓度高的情况下,混合纳米流体的稳定性较好且优于单组份TiNTs和TiNSs纳米流体,但在TiNSs浓度高的情况下,混合纳米流体的稳定性较差.测试了不同剪切速率下纳米流体的粘度;从粘度变化的角度解释了纳米流体总浓度与TiNTs和TiNSs浓度比影响纳米颗粒沉降速率的原因.

参考文献

[1] Xiang-Qi Wang;Arun S. Mujumdar.Heat transfer characteristics of nanofluids: a review[J].International Journal of Thermal Sciences,20071(1):1-19.
[2] 张飞龙;佀慧娜;王莉;范宗良;王刚.以柠檬酸钠为分散剂一步法合成Cu-水导热纳米流体[J].功能材料,2014(23):23138-23141.
[3] 李新芳;朱冬生;王先菊;汪南;李华;杨硕.Cu-水纳米流体的分散行为及导热性能研究[J].功能材料,2008(1):162-165,169.
[4] S. M. S. Murshed;K. C. Leong;C. Yang.Thermophysical and electrokinetic properties of nanofluids - A critical review[J].Applied thermal engineering: Design, processes, equipment, economics,200817/18(17/18):2109-2125.
[5] Yiamsawasd, T.;Dalkilic, A.S.;Wongwises, S..Measurement of the thermal conductivity of titania and alumina nanofluids[J].Thermochimica Acta: An International Journal Concerned with the Broader Aspects of Thermochemistry and Its Applications to Chemical Problems,2012:48-56.
[6] 贾莉斯;彭岚;陈颖;王世光;莫松平;李兴.水基纳米流体的凝固行为[J].功能材料,2014(9):9092-9095,9100.
[7] 邵雪峰;陈颖;贾莉斯;成正东;李兴;莫松平;刘琢玮.中低温环境下Al2O3-乙醇纳米流体稳定性的研究[J].功能材料,2014(20):20024-20027.
[8] Wang, XJ;Zhu, DS;Yang, S.Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids[J].Chemical Physics Letters,20091/3(1/3):107-111.
[9] Kuerbanjiang Wusiman;Hyomin Jeong;Kelimu Tulugan;Handry Afrianto;Hanshik Chung.Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS[J].International Communications in Heat and Mass Transfer: A Rapid Communications Journal,2013:28-33.
[10] Liu, Zhuowei;Chen, Ying;Mo, Songping;Cheng, Zhengdong;Li, Huawei.Stability of TiO2 Nanoparticles in Deionized Water with ZrP Nanoplatelets[J].Journal of nanoscience and nanotechnology,20154(4):3271-3275.
[11] Weerapun Duangthongsuk;Somchai Wongwises.Heat transfer enhancement and pressure drop characteristics of Ti0{sub}2-water nanofluid in a double-tube counter flow heat exchanger[J].International Journal of Heat and Mass Transfer,20097/8(7/8):2059-2067.
[12] Meng Ni;Michael K.H. Leung;Dennis Y.C. Leung;K. Sumathy.A review and recent developments in photocatalytic water-splitting using TiO_2 for hydrogen production[J].Renewable & Sustainable Energy Reviews,20073(3):401-425.
[13] Mogilevsky G;Chen Q;Kulkarni H;Kleinhammes A;Mullins WM;Wu Y.Layered nanostructures of delaminated anatase: Nanosheets and nanotubes[J].The journal of physical chemistry, C. Nanomaterials and interfaces,20089(9):3239-3246.
[14] Jun Song Chen;Xiong Wen Lou.Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction[J].Electrochemistry communications,200912(12):2332-2335.
[15] Songping Mo;Ying Chen;Lisi Jia;Xianglong Luo.Investigation on crystallization of TiO_2-water nanofluids and deionized water[J].Applied energy,2012:65-70.
[16] H. Majidian;T. Ebadzadeh;E. Salahi.Stability evaluation of aqueous alumina-zircon-silicon carbide suspensions by application of DLVO theory[J].CERAMICS INTERNATIONAL,20117(7):2941-2945.
[17] Peng He;Andres F. Mejia;Zhengdong Cheng;Dazhi Sun;Hung-Jue Sue;Dean S. Dinair;Manuel Marquez.Hindrance function for sedimentation and creaming of colloidal disks[J].Physical review, E. Statistical, nonlinear, and soft matter physics,20102(2):026310:1-026310:7.
[18] G. A. Vliegenthart;H. N. W. Lekkerkerker.Phase behavior of colloidal rod-sphere mixtures[J].The Journal of Chemical Physics,19999(9):4153-4157.
[19] Helden L.;Roth R.;Koenderink GH.;Leiderer P.;Bechinger C..Direct measurement of entropic forces induced by rigid rods - art. no. 048301[J].Physical review letters,20034(4):8301-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%