欢迎登录材料期刊网

材料期刊网

高级检索

研究了35CrMoA合金钢在接触应力为150 MPa,等效应力幅值为400 MPa时方形和菱形路径下的微动疲劳特性,包括循环应力响应特征、疲劳寿命、微动斑及微动疲劳断口的形貌特征。结果表明,方形路径下,35 CrMoA钢经缓慢循环软化、快速软化到达最后的稳定阶段,而菱形加载下,材料快速软化之后直接到达稳定阶段;两种路径下的疲劳寿命差别不大;方形加载的滑移区较宽,粘着区较窄,而菱形加载则相反;方形路径下裂纹垂直于试样表面扩展,而菱形加载路径下的微裂纹是曲折的,沿与轴线成一定角度的方向上扩展。

In this paper,the fretting fatigue behavior of 35CrMoA was studied at 150 MPa contact stress and 400 MPa equivalent stress amplitude under square and diamond paths.This included cycle stress response char-acters,fatigue life,morphological characteristics of fretting spot and the failure fracture.The result shows:un-der square path,35CrMoA reached the stage of stability through slow and rapid softening,while under diamond path,it reached the final stage only through rapid softening;The fatigue life have little difference under those two paths;Under square path,the slip region is wide,and the stick region is relatively narrow,but opposite under diamond path;The crack extension perpendicular to the sample surface under square path,but for dia-mond path,the micro crack is tortuous,and extension to a certain angle with axis.

参考文献

[1] J.A. Pape;R.W. Neu.A comparative study of the fretting fatigue behavior of 4340 steel and PH 13-8 Mo stainless steel[J].International Journal of Fatigue,200712(12):2219-2229.
[2] J. F. Peng;C. Song;M. X. Shen;J. F. Zheng;Z. R. Zhou;M. H. Zhu.An experimental study on bending fretting fatigue characteristics of 316L austenitic stainless steel[J].Tribology International,201111(11):1417-1426.
[3] Naomi Hamada;Masao Sakane;Takamoto Itoh;Hideyuki Kanayama.High temperature nonproportional low cycle fatigue using fifteen loading paths[J].Theoretical and Applied Fracture Mechanics,2014:136-143.
[4] Yang, F.P.;Yuan, X.G.;Kuang, Z.B..Influence of loading path on fatigue crack growth under multiaxial loading condition[J].Fatigue & Fracture of Engineering Materials and Structures,20125(5):425-432.
[5] Dagang Wang;Dekun Zhang;Shirong Ge.Fretting-fatigue behavior of steel wires in low cycle fatigue[J].Materials & design,201110(10):4986-4993.
[6] Y. Kondo;C. Sakae;M. Kubota.Fretting fatigue under variable loading below fretting fatigue limit[J].Fatigue & Fracture of Engineering Materials and Structures,20063(3):183-189.
[7] Hojjati-Talemi, Reza;Zahedi, Ali;De Baets, Patrick.Fretting fatigue failure mechanism of automotive shock absorber valve[J].International Journal of Fatigue,2015:58-65.
[8] Dagang Wang;Dekun Zhang;Shirong Ge.Effect of displacement amplitude on fretting fatigue behavior of hoisting rope wires in low cycle fatigue[J].Tribology International,2012:178-189.
[9] Namjoshi SA.;Mall S.;Jain VK.;Jin O..Fretting fatigue crack initiation mechanism in Ti-6Al-4V[J].Fatigue & Fracture of Engineering Materials and Structures,200210(10):955-964.
[10] J. Meriaux;M. Boinet;S. Fouvry;J. C. Lenain.Identification of fretting fatigue crack propagation mechanisms using acoustic emission[J].Tribology International,201011(11):2166-2174.
[11] M.S.D. Jacob;Prithvi Raj Arora;M. Saleem.Fretting fatigue crack initiation: An experimental and theoretical study[J].International Journal of Fatigue,20077(7):1328-1338.
[12] Dagang Wang;Dekun Zhang;Shirong Ge.Finite element analysis of fretting fatigue behavior of steel wires and crack initiation characteristics[J].Engineering failure analysis,2013:47-62.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%