欢迎登录材料期刊网

材料期刊网

高级检索

近年来有关钠离子电池的理论计算和实验研究不断增多,其中第一性原理计算的应用及结果引起国内外学者的研究兴趣.综述了密度泛函理论在钠离子电池负极材料中应用的研究进展,主要包括结构模型、电极电势或电池电压、可逆容量、晶格膨胀及其弹性、钠的存在状态、钠离子的扩散行为和电子导电性.随着研究的逐步深入,通过密度泛函理论计算能够给出电极材料可逆储钠性能的系统解释,并在新材料结构和成分设计方面发挥更重要的作用.

In recent years,increasing researches of theoretical calculation and experimental about the sodium ion battery,the application of the first principle calculation and the results have attracted enormous interest of re-searchers.The density functional theory of anode materials in sodium-ion batteries has been reviewed in this pa-per,mainly including structure models of the anode materials,electrode potential or average voltage,reversible capacity,structure expansion and elasticity,existence state of sodium,behavior of ion diffusion and electronic conductivity.With the development of the density functional theory,a systematic explanation of reversible sodi-um storage behavior of the electrode materials will be given and a significant role will be played in design of structure and composition for the new materials.

参考文献

[1] Michael D. Slater;Donghan Kim;Eungje Lee;Christopher S. Johnson.Sodium-Ion Batteries[J].Advanced functional materials,20138(8):947-958.
[2] 何菡娜;王海燕;唐有根;刘又年.钠离子电池负极材料[J].化学进展,2014(4):572-581.
[3] Shyue Ping Ong;Vincent L. Chevrier;Geoffroy Hautier;Anubhav Jain;Charles Moore;Sangtae Kim;Xiaohua Ma;Gerbrand Ceder.Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J].Energy & environmental science: EES,20119(9):3680-3688.
[4] 杨绍斌;李犇;唐树伟.第一性原理在锂离子电池负极材料方面的应用研究[J].材料导报,2012(15):62-66,78.
[5] Yasuharu Okamoto.Density Functional Theory Calculations of Alkali Metal (Li, Na, and K) Graphite Intercalation Compounds[J].The journal of physical chemistry, C. Nanomaterials and interfaces,20141(1):16-19.
[6] Kunihiro Nobuhara;Hideki Nakayama;Masafumi Nose;Shinji Nakanishi;Hideki Iba.First-principles study of alkali metal-graphite intercalation compounds[J].Journal of Power Sources,2013Dec.1(Dec.1):585-587.
[7] Tsai, Ping-chun;Chung, Sai-Cheong;Lin, Shih-kang;Yamada, Atsuo.Ab initio study of sodium intercalation into disordered carbon[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,201518(18):9763-9768.
[8] Caragiu M;Finberg S.Alkali metal adsorption on graphite: a review[J].Journal of Physics. Condensed Matter,200535(35):R995-R1024.
[9] Z.H.Zhu;G.Q.Lu.Comparative Study of Li,Na,and K Adsorptions on Graphite by Using ab Initio Method[J].Langmuir: The ACS Journal of Surfaces and Colloids,200424(24):10751-10755.
[10] K. Rytkoenen;J. Akola;M. Manninen.Sodium atoms and clusters on graphite by density functional theory[J].Physical Review.B.Condensed Matter,200420(20):205404.1-205404.7.
[11] C. N. R. Rao;A. K. Sood;K. S. Subrahmanyam.Graphene: The New Two-Dimensional Nanomaterial[J].Angewandte Chemie,200942(42):7752-7777.
[12] Guoxiu Wang;Xiaoping Shen;Jane Yao.Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J].Carbon,20098(8):2049-2053.
[13] Su, D.;Ahn, H.-J.;Wang, G..SnO_2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance[J].Chemical communications,201330(30):3131-3133.
[14] L. Qiao;C.Q. Qu;H.Z. Zhang;S.S. Yu;X.Y. Hu;X.M. Zhang;D.M. Bi;Q. Jiang;W.T. Zheng.Effects of alkali metal adsorption on the structural and field emission properties of graphene[J].Diamond and Related Materials,201011(11):1377-1381.
[15] Nakada, K.;Ishii, A..Migration of adatom adsorption on graphene using DFT calculation[J].Solid State Communications,20101(1):13-16.
[16] T. O. Wehling;M. I. Katsnelson;A. I. Lichtenstein.Impurities on graphene: Midgap states and migration barriers[J].Physical review, B. Condensed matter and materials physics,20098(8):085428:1-085428:7.
[17] M. Klintenberg;S. Lebègue;M. I. Katsnelson;O. Eriksson.Theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements[J].Physical review, B. Condensed matter and materials physics,20108(8):085433:1-085433:5.
[18] Kyung-Hwan Jin;Seon-Myeong Choi;Seung-Hoon Jhi.Crossover in the adsorption properties of alkali metals on graphene[J].Physical review, B. Condensed matter and materials physics,20103(3):033414:1-033414:4.
[19] Xiaojie Liu;C. Z. Wang;Y. X. Yao;W. C. Lu;M. Hupalo;M. C. Tringides;K. M. Ho.Bonding and charge transfer by metal adatom adsorption on graphene[J].Physical review, B. Condensed matter and materials physics,201123(23):235411:1-235411:12.
[20] Paulo V C Medeiros;F de BritoMota;Artur J S Mascarenhas;Caio M C de Castilho.Adsorption of monovalent metal atoms on graphene: a theoretical approach[J].Nanotechnology,201011(11):115701:1-115701:6.
[21] Chen Ling;Fuminori Mizuno.Boron-doped graphene as a promising anode for Na-ion batteries[J].Physical chemistry chemical physics: PCCP,201422(22):10419-10424.
[22] Malyi, Oleksandr I.;Sopiha, Kostiantyn;Kulish, Vadym V.;Tan, Teck L.;Manzhos, Sergei;Persson, Clas.A computational study of Na behavior on graphene[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2015Apr.1(Apr.1):235-243.
[23] Vadym V. Kulish;Oleksandr I. Malyi;Man-Fai Ng.Controlling Na diffusion by rational design of Si-based layered architectures[J].Physical chemistry chemical physics: PCCP,20149(9):4260-4267.
[24] Yue, Chuang;Yu, Yingjian;Sun, Shibo;He, Xu;Chen, Binbin;Lin, Wei;Xu, Binbin;Zheng, Mingsen;Wu, Suntao;Li, Jing;Kang, Junyong;Lin, Liwei.High Performance 3D Si/Ge Nanorods Array Anode Buffered by TiN/Ti Interlayer for Sodium-Ion Batteries[J].Advanced functional materials,20159(9):1386-1392.
[25] James M. Sangster.Na-P (Sodium-Phosphorus) System[J].Journal of Phase Equilibria and Diffusion,20101(1):62-67.
[26] Mortazavi, Majid;Ye, Qiongjie;Birbilis, Nick;Medhekar, Nikhil V..High capacity group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights[J].Journal of Power Sources,2015Jul.1(Jul.1):29-36.
[27] Kulish, Vadym V.;Malyi, Oleksandr I.;Persson, Clas;Wu, Ping.Adsorption of metal adatoms on single-layer phosphorene[J].Physical chemistry chemical physics: PCCP,20152(2):992-1000.
[28] Kulish, Vadym V.;Malyi, Oleksandr I.;Persson, Clas;Wu, Ping.Phosphorene as an anode material for Na-ion batteries: a first-principles study[J].Physical chemistry chemical physics: PCCP,201521(21):13921-13928.
[29] Liu, Xiao;Wen, Yanwei;Chen, Zhengzheng;Shan, Bin;Chen, Rong.A first-principles study of sodium adsorption and diffusion on phosphorene[J].Physical chemistry chemical physics: PCCP,201525(25):16398-16404.
[30] Jiangfeng Qian;Xianyong Wu;Yuliang Cao.High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries[J].Angewandte Chemie,201317(17):4633-4636.
[31] Su, Jingcang;Pei, Yong;Yang, Zhenhua;Wang, Xianyou.Ab initio study of graphene-like monolayer molybdenum disulfide as a promising anode material for rechargeable sodium ion batteries[J].RSC Advances,201481(81):43183-43188.
[32] V.L. Chevrier;G. Ceder.Challenges for Na-ion Negative Electrodes[J].Journal of the Electrochemical Society,20119(9):A1011-A1014.
[33] M. N. Obrovac;Leif Christensen;Dinh Ba Le.Alloy Design for Lithium-Ion Battery Anodes[J].Journal of the Electrochemical Society,20079(9):A849-A855.
[34] Wang, Zhaohui;Ratvik, Arne Petter;Grande, Tor;Selbach, Sverre M..Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations[J].RSC Advances,201521(21):15985-15992.
[35] Rytkonen K;Akola J;Manninen M.Density functional study of alkali-metal atoms and monolayers on graphite (0001)[J].Physical review, B. Condensed matter and materials physics,20077(7):5401-1-5401-9-0.
[36] Oleksandr I. Malyi;Teck L. Tan;Sergei Manzhos.A Comparative Computational Study of Structures, Diffusion, and Dopant Interactions between Li and Na Insertion into Si[J].Applied physics express,20132(2):27301.1-27301.3.
[37] Malyi, O.;Kulish, V.V.;Tan, T.L.;Manzhos, S..A computational study of the insertion of Li, Na, and Mg atoms into Si(111) nanosheets[J].Nano Energy,20136(6):1149-1157.
[38] Xie, Xiuqiang;Ao, Zhimin;Su, Dawei;Zhang, Jinqiang;Wang, Guoxiu.MoS2/Graphene Composite Anodes with Enhanced Performance for Sodium-Ion Batteries: The Role of the Two-Dimensional Heterointerface[J].Advanced functional materials,20159(9):1393-1403.
[39] Su, Dawei;Dou, Shixue;Wang, Guoxiu.Bismuth: A new anode for the Na-ion battery[J].Nano Energy,2015:88-95.
[40] L. D. Ellis;B. N. Wilkes;T. D. Hatchard.In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells[J].Journal of the Electrochemical Society,20143(3):A416-A421.
[41] Tuan T. Tran;M. N. Obrovac.Alloy Negative Electrodes for High Energy Density Metal-Ion Cells[J].Journal of the Electrochemical Society,201112(12):A1411-A1416.
[42] Komaba, S.;Matsuura, Y.;Ishikawa, T.;Yabuuchi, N.;Murata, W.;Kuze, S..Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell[J].Electrochemistry communications,2012:65-68.
[43] Majid Mortazavi;Junkai Deng;Vivek B. Shenoy;Nikhil V. Medhekar.Elastic softening of alloy negative electrodes for Na-ion batteries[J].Journal of Power Sources,2013Mar.1(Mar.1):207-214.
[44] Darwiche, A.;Marino, C.;Sougrati, M.T.;Fraisse, B.;Stievano, L.;Monconduit, L..Better cycling performances of bulk sb in na-ion batteries compared to li-ion systems: An unexpected electrochemical mechanism[J].Journal of the American Chemical Society,201251(51):20805-20811.
[45] Fehse, Marcus;Ventosa, Edgar.Is TiO2(B) the Future of Titanium-Based Battery Materials?[J].ChemPlusChem,20155(5):785-795.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%