欢迎登录材料期刊网

材料期刊网

高级检索

实现规模化生产是高容量硅负极走向商业化面临的最大挑战.报道了1种简单、成本低、产率高的硅材料制备方法,即对溶胶-凝胶反应形成的SiO2-F127(PEO106PPO70PEO106,1种三嵌段共聚物)干凝胶进行空气热解和镁热还原处理.而后,利用偶氮化反应在合成的硅材料表面包覆一碳层.利用 X 射线衍射(XRD)、场发射扫描电镜(FE-SEM)、氮气吸脱附实验和热重方法对所制备的硅-碳复合物的形貌和组分进行了分析.结果表明,该复合物中硅含量为76.3%(质量分数),呈珊瑚状形貌,具有微孔-介孔-大孔多级孔道结构和高的比表面积123 m2/g.电化学性能测试结果显示所制备的Si-C复合负极比容量高达2785 mAh/g.

Industrially scalable fabrication of high-capacity silicon anode was the most critical and challenging as-pect for its commercialization.In this report,a low-cost,high-yield and simple route was provided to synthesize silicon through air pyrolysis followed by magnesiothermic reduction of SiO2-F127 (EO106 PO70 EO106 ,a triblock copolymer)xerogel formed by a sol-gel reaction.Furthermore,a diazotization method is employed to coat the silicon with a carbon layer for use as hybrid anode material.X-ray diffraction (XRD),field emission scanning e-lectron microscope (FE-SEM),N2 sorption measurement and thermogravimetric analysis (TGA)were used to study the morphology and composition of the composite.The results indicate that the composite containing 76.3wt% Si has a coralloid-like micro-meso-macro hierarchically porous structure with a specific surface area of 123 m2/g.Electrochemical tests reveal that the as-prepared Si-C anode demonstrates specific capacity as high as 2 785 mAh/g,indicating improved electrochemical performance.

参考文献

[1] Jeannine R. Szczech;Song Jin.Nanostructured silicon for high capacity lithium battery anodes[J].Energy & environmental science: EES,20111(1):56-72.
[2] Ding, N;Xu, J;Yao, YX;Wegner, G;Fang, X;Chen, CH;Lieberwirth, I.Determination of the diffusion coefficient of lithium ions in nano-Si[J].Solid state ionics,20092/3(2/3):222-225.
[3] Hyejung Kim;Minho Seo;Mi-Hee Park.A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries[J].Angewandte Chemie,201012(12):2146-2149.
[4] Chan CK;Peng HL;Liu G;McIlwrath K;Zhang XF;Huggins RA;Cui Y.High-performance lithium battery anodes using silicon nanowires[J].Nature nanotechnology,20081(1):31-35.
[5] Song, T.;Xia, J.;Lee, J.-H.;Lee, D.H.;Kwon, M.-S.;Choi, J.-M.;Wu, J.;Doo, S.K.;Chang, H.;Park, W.I.;Zang, D.S.;Kim, H.;Huang, Y.;Hwang, K.-C.;Rogers, J.A.;Paik, U..Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J].Nano letters,20105(5):1710-1716.
[6] Yao, Y.;McDowell, M.T.;Ryu, I.;Wu, H.;Liu, N.;Hu, L.;Nix, W.D.;Cui, Y..Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J].Nano letters,20117(7):2949-2954.
[7] Wu, H.;Chan, G.;Choi, J.W.;Ryu, I.;Yao, Y.;Mcdowell, M.T.;Lee, S.W.;Jackson, A.;Yang, Y.;Hu, L.;Cui, Y..Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J].Nature nanotechnology,20125(5):310-315.
[8] Yong Jae Cho;Han Sung Kim;Hyungsoon Im.Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201119(19):9451-9457.
[9] Aurelien Cohier;Barbara Laik;Ki-Hwan Kim;Jean-Luc Maurice;Jean-Pierre Pereira-Ramos;Costel Sorin Cojocaru;Pierre Tran Van.High-Rate Capability Silicon Decorated Vertically Aligned Carbon Nanotubes for Li-Ion Batteries[J].Advanced Materials,201219(19):2592-2597.
[10] A. Magasinki;P. Dixon;B. Hertzberg.High-performance lithium-ion anodes using a hierarchical bottom-up approach[J].Nature materials,20104(4):353-358.
[11] Liu, N.;Wu, H.;McDowell, M.T.;Yao, Y.;Wang, C.;Cui, Y..A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J].Nano letters,20126(6):3315-3321.
[12] Jung-Keun Yoo;Jongsoon Kim;Yeon Sik Jung;Kisuk Kang.Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage[J].Advanced Materials,201240(40):5452-5456.
[13] Park, MH;Kim, MG;Joo, J;Kim, K;Kim, J;Ahn, S;Cui, Y;Cho, J.Silicon Nanotube Battery Anodes[J].Nano letters,200911(11):3844-3847.
[14] Kim H;Cho J.Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material[J].Nano letters,200811(11):3688-3691.
[15] Hyunjung Kim;Byunghee Han;Jaebum Choo.Three-Dimensional Porous Silicon Particles for Use in High-Perfor- mance Lithium Secondary Batteries[J].Angewandte Chemie,200852(52):10151-10154.
[16] Richard K. Baldwin;Katherine A. Pettigrew;Eva Ratai;Matthew P. Augustine;Susan M. Kauzlarich.Solution reduction synthesis of surface stabilized silicon nanoparticles[J].Chemical communications,200217(17):1822-1823.
[17] 于晓磊;杨军;冯雪娇;高鹏飞;王久林;努丽燕娜.多孔硅/碳复合负极材料的制备及电化学性能[J].无机材料学报,2013(9):937-942.
[18] BonjaeKoo;Hyunjung Kim;Younghyun Cho.A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes In Lithium Ion Batteries[J].Angewandte Chemie,201235(35):8762-8767.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%