欢迎登录材料期刊网

材料期刊网

高级检索

为了研究并消除石墨团聚对石墨烯产量的影响,在连续性稳定分散状态和非连续性稳定分散状态下采用机械剥离法制备了石墨烯溶液,通过zeta电位表征了制备过程中石墨的团聚情况,利用吸光度测试研究了石墨溶液的分散状态,并通过原子力显微镜表征了制备出的石墨烯结构.结果表明,石墨片层结构被剥离使石墨表面积被释放,导致石墨的团聚势能增加,剥离效果和石墨烯产率下降;连续性稳定分散状态克服了随剥离过程剧增的团聚势能,经4 h机械剥离制备,上层清液石墨烯产量提高率达到21.9%;制备出的厚度为1~2 nm 的单层石墨烯结构完好且处于良好分散状态;该方法为大规模制备石墨烯提供理论和工程指导.

In order to analyze and eliminate the effect of aggregation of graphite to the yield of graphene,the gra-phene dispersion were prepared under the continues stable disperse state and non-continues stable disperse state. The aggregation of graphite during the preparation process was characterized by zeta potential.The disperse state of graphite dispersion was studied by measuring its absorbance.And the prepared graphene structures were characterized by atomic force microscope.Results show that the surface area of graphite is increased by ex-foliating the graphite sheets,leading to the increasing of potential energy of aggregation of graphite and the de-crease of the efficiency of exfoliation and graphene yield.The increasing potential energy of aggregation was o-vercame by continues stable dispersing,and the yield growth rate of graphene in top graphene dispersion reached at 2 1 .9% by mechanical exfoliating graphite sheets for 4 h.The monolayer graphene with thickness of 1-2 nm was prepared,which show well structural integrity and free of aggregation.The method of continues stable dispersing gives a theoretical and practical guide for high-yield preparation of graphene.

参考文献

[1] A. Charrier;A. Coati;T. Argunova;F. Thibaudau;Y. Garreau;R. Pinchaux;I. Forbeaux;J.-M. Debever;M. Sauvage-Simkin;J.-M. Themlin.Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films[J].Journal of Applied Physics,20025(5):2479-2484.
[2] Claire Berger;Zhimin Sonnnnng;Tianbo Li;Xuebin Li;Asmerom y.oGBAZGHI;Rui Feng;Zhenting Dai;Alexei N.Marchenkov;Edward H.Conrad;Philip N.First;Walt A.de Heer.Ultrathin Epitaxial Graphite:2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,200452(52):19912-19916.
[3] Reina A;Jia XT;Ho J;Nezich D;Son HB;Bulovic V;Dresselhaus MS;Kong J.Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition[J].Nano letters,20091(1):30-35.
[4] Jan M. Englert;Andreas Hirsch;Xinliang Feng.Chemical Methods for the Generation of Graphenes and Graphene Nanoribbons[J].Angewandte Chemie,201137(37):A17-A24.
[5] Siegfried Eigler;Michael Enzelberger-Heim;Stefan Grimm;Philipp Hofmann,;Wolfgang Kroener;Andreas Geworski;Christoph Dotzer;Michael Roeckert;Jie Xiao;Christian Papp;Ole Lytken;Hans-Peter Steinrueck;Paul Mueller;Andreas Hirsch.Wet Chemical Synthesis of Graphene[J].Advanced Materials,201326(26):3583-3587.
[6] Catharina Knieke;Angela Berger;Michael Voigt.Scalable production of graphene sheets by mechanical delamination[J].Carbon: An International Journal Sponsored by the American Carbon Society,201011(11):3196-3204.
[7] Cornelia Damm;Thomas J. Nacken;Wolfgang Peukcrt.Quantitative evaluation of delamination of graphite by wet media milling[J].Carbon: An International Journal Sponsored by the American Carbon Society,2015:284-294.
[8] Umar Khan;Arlene O'Neill;Harshit Porwal.Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation[J].Carbon: An International Journal Sponsored by the American Carbon Society,20122(2):470-475.
[9] Hernandez, Y;Lotya, M;Rickard, D;Bergin, SD;Coleman, JN.Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery[J].Langmuir: The ACS Journal of Surfaces and Colloids,20105(5):3208-3213.
[10] M. Vittori Antisari;A. Montone;N. Jovic.Low energy pure shear milling: A method for the preparation of graphite nano-sheets[J].Scripta materialia,200611(11):1047-1050.
[11] Hennart, SLA;Wildeboer, WJ;van Hee, P;Meesters, GMH.Identification of the grinding mechanisms and their origin in a stirred ball mill using population balances[J].Chemical Engineering Science,200919(19):4123-4130.
[12] Mustafa Lotya;Yenny Hernandez;Paul J. King;Ronan J. Smith;Valeria Nicolosi;Lisa S. Karlsson;Fiona M. Blighe;Sukanta De;Zhiming Wang;I. T. McGovern.Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions[J].Journal of the American Chemical Society,200910(10):3611-3620.
[13] 李欢欢;彭川黔;刘强.边缘修饰对石墨烯纳米带电子和磁性性质的影响[J].重庆理工大学学报(自然科学版),2014(7):86-91.
[14] Lockwood NA;de Pablo JJ;Abbott NL.Influence of surfactant tail branching and organization on the orientation of liquid crystals at aqueous-liquid crystal interfaces[J].Langmuir: The ACS Journal of Surfaces and Colloids,200515(15):6805-6814.
[15] McDonald TJ;Engtrakul C;Jones M;Rumbles G;Heben MJ.Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,200650(50):25339-25346.
[16] S.L.A. Hennart;W.J. Wildeboer;P. van Hee.Stability of particle suspensions after fine grinding[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,20103(3):226-231.
[17] Hernandez Y;Nicolosi V;Lotya M;Blighe FM;Sun ZY;De S;McGovern IT;Holland B;Byrne M;Gun'ko YK.High-yield production of graphene by liquid-phase exfoliation of graphite[J].Nature nanotechnology,20089(9):563-568.
[18] Changgu Lee;Xiaoding Wei;Jeffrey W. Kysar;James Hone.Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,20085887(5887):385-388.
[19] Ishigami M;Chen JH;Cullen WG;Fuhrer MS;Williams ED.Atomic structure of graphene on SiO2[J].Nano letters,20076(6):1643-1648.
[20] P. Nemes-Incze;Z. Osvath;K. Kamaras.Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy[J].Carbon: An International Journal Sponsored by the American Carbon Society,200811(11):1435-1442.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%