欢迎登录材料期刊网

材料期刊网

高级检索

综述了最近报道的关于石墨烯与不同金属氧化物复合材料的主要制备方法,重点强调了石墨烯与金属氧化物复合材料应用于气敏传感器领域在响应提高,响应恢复速度提高,工作温度降低等方面所体现出的优势,并分析了关于气敏特性改善的可能因素,同时考虑了关于石墨烯与金属氧化物复合材料气敏响应可能的作用机理。同时也探讨了未来研究的方向和技术挑战,为进一步的研究和发展提供了一定的帮助。

This paper gives a review about the most recent progress in synthesis of composites of graphene and different metal oxides.Several advantages of composites of graphene and metal oxide such as increasing the re-sponse,making response/recovery process faster,lowering the working temperature etc.are emphasized.Possi-ble reasons are analyzed for these improvements of sensing properites.The likely gas sensing mechanisms of composites of graphene and metal oxide are considered.To facilitate further research and development,the technical challenges are discussed,and several future research directions are also suggested in this review.

参考文献

[1] Nomura K;MacDonald AH.Quantum Hall ferromagnetism in graphene[J].Physical review letters,200625(25):6602-1-6602-4-0.
[2] K. S. Novoselov;D. Jiang;F. Schedin;T. J. Booth;V. V. Khotkevich;S. V. Morozov;A. K. Geim.Two-dimensional atomic crystals[J].Proceedings of the National Academy of Sciences of the United States of America,200530(30):10451-10453.
[3] Peres NMR;Guinea F;Neto AHC.Electronic properties of disordered two-dimensional carbon[J].Physical review, B. Condensed matter and materials physics,200612(12):5411-1-5411-23-0.
[4] S. G. Sharapov;V. P. Gusynin;H. Beck.Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations[J].Physical Review.B.Condensed Matter,20047(7):075104.1-075104.22.
[5] Son YW;Cohen ML;Louie SG.Energy gaps in graphene nanoribbons[J].Physical review letters,200621(21):6803-1-6803-4-0.
[6] Tan YW;Zhang Y;Bolotin K;Zhao Y;Adam S;Hwang EH;Das Sarma S;Stormer HL;Kim P.Measurement of scattering rate and minimum conductivity in graphene[J].Physical review letters,200724(24):246803-1-246803-4-0.
[7] Titov M;Beenakker CWJ.Josephson effect in ballistic graphene[J].Physical review, B. Condensed matter and materials physics,20064(4):1401-1-1401-4-0.
[8] K. Ziegler.Robust Transport Properties in Graphene[J].Physical review letters,200626(26):266802.1-266802.4.
[9] 关磊.石墨烯的制备与应用研究进展[J].电子元件与材料,2012(04):70-73.
[10] M.P. Deosarkar;S.M. Pawar;S.H. Sonawane.Process intensification of uniform loading of SnO2 nanoparticles on graphene oxide nanosheets using a novel ultrasound assisted in situ chemical precipitation method[J].Chemical Engineering and Processing,2013:48-54.
[11] Wu, Z.-S.;Ren, W.;Wen, L.;Gao, L.;Zhao, J.;Chen, Z.;Zhou, G.;Li, F.;Cheng, H.-M..Graphene anchored with Co_3O_4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J].ACS nano,20106(6):3187-3194.
[12] Chen, S.;Zhu, J.;Wu, X.;Han, Q.;Wang, X..Graphene oxide-Mno_2 nanocomposites for supercapacitors[J].ACS nano,20105(5):2822-2830.
[13] Phuong T.N. Nguyen;Chris Salim;Winarto Kurniawan.A non-hydrolytic sol-gel synthesis of reduced graphene oxide/TiO2 microsphere photocatalysts[J].Catalysis Today,2014:166-173.
[14] A.R. Marlinda;N.M. Huang;M.R. Muhamad;M.N. An'amt;B.Y.S. Chang;N. Yusoff;I. Harrison;H.N. Lim;C.H. Chia;S. Vijay Kumar.Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites[J].Materials Letters,2012:9-12.
[15] Jun Song Chen;Zhiyu Wang;Xiao Chen Dong.Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities[J].Nanoscale,20115(5):2158-2161.
[16] Xiao Huang;Xiaoying Qi;Freddy Boey.Graphene-based composites[J].Chemical Society Reviews,20122(2):666-686.
[17] K. S. Novoselov;V. I. Fal'ko;L. Colombo;P.R.Gellert;M. G. Schwab;K. Kim.A roadmap for graphene[J].Nature,2012Oct.11 TN.7419(Oct.11 TN.7419):192-C3.
[18] Virendra Singh;Daeha Joung;Lei Zhai;Soumen Das;Saiful I. Khondaker;Sudipta Seal.Graphene based materials: Past, present and future[J].Progress in materials science,20118(8):1178-1271.
[19] Noboru Yamazoe.Toward innovations of gas sensor technology[J].Sensors and Actuators, B. Chemical,20051/2(1/2):2-14.
[20] Liang, Xishuang;Kim, Tae-Hyung;Yoon, Ji-Wook;Kwak, Chang-Hoon;Lee, Jong-Heun.Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating[J].Sensors and Actuators, B. Chemical,2015:934-942.
[21] Dan, YP;Lu, Y;Kybert, NJ;Luo, ZT;Johnson, ATC.Intrinsic Response of Graphene Vapor Sensors[J].Nano letters,20094(4):1472-1475.
[22] Ganhua Lu;Leonidas E Ocola;Junhong Chen.Reduced graphene oxide for room-temperature gas sensors[J].Nanotechnology,200944(44):445502:1-445502:9.
[23] Ganhua Lu;Leonidas E. Ocola;Junhong Chen.Gas detection using low-temperature reduced graphene oxide sheets[J].Applied physics letters,20098(8):083111-1-083111-3-0.
[24] Inhwa Jung;Dmitriy Dikin;Sungjin Park.Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets[J].The journal of physical chemistry, C. Nanomaterials and interfaces,200851(51):20264-20268.
[25] Robinson JT;Perkins FK;Snow ES;Wei ZQ;Sheehan PE.Reduced Graphene Oxide Molecular Sensors[J].Nano letters,200810(10):3137-3140.
[26] Yanhong Chang;Yunfeng Yao;Bin Wang;Hui Luo;Tianyi Li;Linjie Zhi.Reduced Graphene Oxide Mediated SnO2 Nanocrystals for Enhanced Gas-sensing Properties[J].材料科学技术学报(英文版),2013(2):157-160.
[27] Lin, Q.;Li, Y.;Yang, M..Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature[J].Sensors and Actuators, B. Chemical,20121(1):139-147.
[28] Giovanni Neri;Salvatore Gianluca Leonardi;Mariangela Latino;Nicola Donato;Seunghwan Baek;Donato E. Conte;Patrícia A. Russo;Nicola Pinna.Sensing behavior of SnO_2/reduced graphene oxide nanocomposites toward NO_2[J].Sensors and Actuators, B. Chemical,2013:61-68.
[29] Patricia A. Russo;Nicola Donato;Salvatore Gianluca Leonardi.Room-Temperature Hydrogen Sensing with Heteronanostructures Based on Reduced Graphene Oxide and Tin Oxide[J].Angewandte Chemie,201244(44):11053-11057.
[30] Hongjie Song;Lichun Zhang;Ghunlan He.Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,201116(16):5972-5977.
[31] Hao Zhang;Jianchao Feng;Teng Fei;Sen Liu;Tong Zhang.SnO_2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature[J].Sensors and Actuators, B. Chemical,2014:472-478.
[32] Zhenyu Zhang;Rujia Zou;Guosheng Song.Highly aligned SnO2 nanorods on graphene sheets for gas sensors[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,201143(43):17360-17365.
[33] Chen, N.;Li, X.;Wang, X.;Yu, J.;Wang, J.;Tang, Z.;Akbar, S.A..Enhanced room temperature sensing of Co_3O_4- intercalated reduced graphene oxide based gas sensors[J].Sensors and Actuators, B. Chemical,2013:902-908.
[34] Aolan Wang;Xueshan Li;Yibo Zhao.Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances[J].Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems,2014:42-48.
[35] Yi, J.;Lee, J.M.;Park, W.I..Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors[J].Sensors and Actuators, B. Chemical,20111(1):264-269.
[36] Ali Esfandiar;Azam Irajizad;Omid Akhavan;Shahnaz Ghasemi;Mohammad Reza Gholami.Pd-WO_3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors[J].International journal of hydrogen energy,201415(15):8169-8179.
[37] MingYan Wang;JunRao Huang;Meng Wang;DongEn Zhang;Jun Chen;、.Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables[J].Food Chemistry,2014May 15(May 15):191-197.
[38] Li Xiao;Dongqing Wu;Sheng Han.Self-Assembled Fe2O3/Graphene Aerogel with High Lithium Storage Performance[J].ACS applied materials & interfaces,20139(9):3764-3769.
[39] Liu, F.;Chu, X.;Dong, Y.;Zhang, W.;Sun, W.;Shen, L..Acetone gas sensors based on graphene-ZnFe_2O_4 composite prepared by solvothermal method[J].Sensors and Actuators, B. Chemical,2013:469-474.
[40] Huang, J.;Wang, M.;Zhang, D.;Zhang, W.;Li, W.;Chen, J..Co3O4 nanorods decorated reduced graphene oxide composite for oxygen reduction reaction in alkaline electrolyte[J].Electrochemistry communications,2013:299-303.
[41] Hwang, Su-Jin;Choi, Kwon-Il;Yoon, Ji-Wook;Kang, Yun Chan;Lee, Jong-Heun.Pure and Palladium-Loaded Co3O4 Hollow Hierarchical Nanostructures with Giant and Ultraselective Chemiresistivity to Xylene and Toluene[J].Chemistry: A European journal,201515(15):5872-5878.
[42] Deng, Jianan;Zhang, Rui;Wang, Lili;Lou, Zheng;Zhang, Tong.Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas[J].Sensors and Actuators, B. Chemical,2015:449-455.
[43] Junbo Wu;Hector A. Becerril;Zhenan Bao;Zunfeng Liu;Yongsheng Chen;Peter Peumans.Organic solar cells with solution-processed graphene transparent electrodes[J].Applied physics letters,200826(26):263302-1-263302-3-0.
[44] C. Nethravathi;Michael Rajamathi.Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide[J].Carbon: An International Journal Sponsored by the American Carbon Society,200814(14):1994-1998.
[45] Nan Zhu;Wen Liu;Mianqi Xue;Zhuang Xie;Dan Zhao;Meining Zhang;Jitao Chen;Tingbing Cao.Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li_4Ti_5O_(12) for lithium-ion batteries[J].Electrochimica Acta,201020(20):5813-5818.
[46] Shun Mao;Kehan Yu;Shumao Cui.A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications[J].Nanoscale,20117(7):2849-2853.
[47] Nantao Hu;Zhi Yang;Yanyan Wang;Liling Zhang;Ying Wang;Xiaolu Huang;Hao Wei;Liangmin Wei;Yafei Zhang.Ultrafast and sensitive room temperature NH_3 gas sensors based on chemically reduced graphene oxide[J].Nanotechnology,20142(2):025502-1-025502-9.
[48] Qingwu Huang;Shouqin Tian;Dawen Zeng.Enhanced Photocatalytic Activity of Chemically Bonded TiO2/ Graphene Composites Based on the Effective Interfacial Charge Transfer through the C-Ti Bond[J].ACS catalysis,20137(7):1477-1485.
[49] Chi, M;Zhao, YP.Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: A first principle study[J].Computational Materials Science,20094(4):1085-1090.
[50] Xian Qin;Qingyuan Meng;Wei Zhao.Effects of Stone-Wales defect upon adsorption of formaldehyde on graphene sheet with or without Al dopant: A first principle study[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,20119/10(9/10):930-933.
[51] Hong-ping Zhang;Xue-gang Luo;Xiao-yang Lin;Xiong Lu;Yang Leng;Hong-tao Song.Density functional theory calculations on the adsorption of formaldehyde and other harmful gases on pure, Ti-doped, or N-doped graphene sheets[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2013Oct.15(Oct.15):559-565.
[52] 冯秋霞;于鹏;王兢;李晓干.Y掺杂的ZnO纳米纤维材料的制备及其气敏传感器作用机理[J].物理化学学报,2015(12):2405-2412.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%