欢迎登录材料期刊网

材料期刊网

高级检索

超疏水是自然界中动植物表面所具有的一种重要表面特性,具有高接触角和低滚动角,具备自清洁和调节表界面粘附与接触及摩擦等功能而具备巨大的应用潜力,并已在表面工程和精密工程领域引起了广泛的关注。总结了近些年来超疏水理论模型的发展和超疏水性的主要影响因素,首先从经典的能量理论方面,应用Young’s方程、Wenzel与Cassie-Baxter两大理论模型以及这两种模型之间的转换条件来阐述超疏水表面的形成机理,并讨论超疏水表面的接触角滞后理论和接触线理论;然后基于 Wenzel 与 Cassie-Baxter 两大理论模型概述了微结构表面几何拓扑形貌及其参数对表面超疏水特性的影响;并对超疏水表面的发展进行了展望。

Super-hydrophobic is an important surface properties of the plants and animals surface in nature.It has great potential because of its high contact angle and low roll angle,with self-cleaning and reconciliations interfa-cial adhesion and friction,and it has caused widespread concern in surface engineering and precision engineering. This paper summarizes the development of superhydrophobic theoretical models in recent years and the main factors affecting of superhydrophobic property,starting with the classical theory of energy,application Young's equation,the theoretical models of Wenzel and Cassie-Baxter,and their transition condition to explain the for-mation mechanism of superhydrophobic surface,and discussing the contact angle of hysteresis theory and the theory of the contact line in superhydrophobic surfaces;then summary of the geometric topology structure of the surface and its parameters effect of super hydrophobic properties based on Wenzel and Cassie-Baxter two theoretical model;final analysis the prospects for superhydrophobic future.

参考文献

[1] Ralf Blossey.Self-cleaning surfaces-virtual realities[J].Nature materials,20035(5):301-306.
[2] McHale G.;Newton MI..Frenkel's method and the dynamic wetting of heterogeneous planar surfaces[J].Colloids and Surfaces, A. Physicochemical and Engineering Aspects,20021/3(1/3):193-201.
[3] Neelesh A.Patankar.Transition between Superhydrophobic States on Rough Surfaces[J].Langmuir: The ACS Journal of Surfaces and Colloids,200417(17):7097-7102.
[4] Aurelie Lafuma;David Quere.Superhydrophobic states[J].Nature materials,20037(7):457-460.
[5] Xiaoyan Zhang;Shuaixia Tan;Ning Zhao.Evaporation of Sessile Water Droplets on Superhydrophobic Natural Lotus and Biomimetic Polymer Surfaces[J].Chemphyschem: A European journal of chemical physics and physical chemistry,200610(10):2067-2070.
[6] 徐建海;李梅;赵燕;路庆华.具有微纳米结构超疏水表面润湿性的研究[J].化学进展,2006(11):1425-1433.
[7] Miwa M.;Fujishima A.;Hashimoto K.;Watanabe T.;Nakajima A..Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J].Langmuir: The ACS Journal of Surfaces and Colloids,200013(13):5754-5760.
[8] David Quere.Model droplets[J].Nature materials,20042(2):79-80.
[9] Extrand CW..Model for contact angles and hysteresis on rough and ultraphobic surfaces[J].Langmuir: The ACS Journal of Surfaces and Colloids,200221(21):7991-7999.
[10] C.W.Extrand.Criteria for Ultralyophobic Surfaces[J].Langmuir: The ACS Journal of Surfaces and Colloids,200412(12):5013-5018.
[11] Gao LC;McCarthy TJ.How Wenzel and Cassie were wrong[J].Langmuir: The ACS Journal of Surfaces and Colloids,20077(7):3762-3765.
[12] Dorrer C;Ruhe J.Contact line shape on ultrahydrophobic post surfaces[J].Langmuir: The ACS Journal of Surfaces and Colloids,20076(6):3179-3183.
[13] Yoshimitsu Z.;Nakajima A.;Watanabe T.;Hashimoto K..Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J].Langmuir: The ACS Journal of Surfaces and Colloids,200215(15):5818-5822.
[14] 翟锦;李欢军;李英顺;李书宏;江雷.碳纳米管阵列超双疏性质的发现[J].物理,2002(8):483-486.
[15] 江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展,2003(12):1258-1264.
[16] Patankar NA.Mimicking the lotus effect: Influence of double roughness structures and slender pillars[J].Langmuir: The ACS Journal of Surfaces and Colloids,200419(19):8209-8213.
[17] C.W.Extrand.Modeling of Ultralyophobicity: Suspension of Liquid Drops by a Single Asperity[J].Langmuir: The ACS Journal of Surfaces and Colloids,200523(23):10370-10374.
[18] Lichao Gao;Thomas J.McCarthy.The "Lotus Effect" Explained: Two Reasons Why Two Length Scales of Topography Are Important[J].Langmuir: The ACS Journal of Surfaces and Colloids,20067(7):2966-2967.
[19] Koch, K;Bhushan, B;Jung, YC;Barthlott, W.Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion[J].Soft matter,20097(7):1386-1393.
[20] Eyal Bittoun;Abraham Marmur.Optimizing Super-Hydrophobic Surfaces: Criteria for Comparison of Surface Topographies[J].Journal of Adhesion Science and Technology: The International Journal of Theoredtical and Basic Aspects of Adhesion Science and Its Applications in All Areas of Technology,20093(3):401-411.
[21] Shutao Wang;Lei Jiang.Definition of Superhydrophobic States[J].Advanced Materials,200721(21):3423-3424.
[22] Favia P.;Cicala G.;Milella A.;Palumbo F.;Rossini R.;d'Agostino R..Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges[J].Surface & Coatings Technology,20030(0):609-612.
[23] Nakajima A.;Hashimoto K.;Watanabe T.;Fujishima A..Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate[J].Advanced Materials,199916(16):1365-1368.
[24] Lee W;Jin MK;Yoo WC;Lee JK.Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability[J].Langmuir: The ACS Journal of Surfaces and Colloids,200418(18):7665-7669.
[25] Jurgen Jopp;Holger Grull;Rachel Yerushalmi-Rozen.Wetting Behavior of Water Droplets on Hydrophobic Microtextures of Comparable Size[J].Langmuir: The ACS Journal of Surfaces and Colloids,200423(23):10015-10019.
[26] G.McHale;N.J.Shirtcliffe;M.I.Newton.Contact-Angle Hysteresis on Super-Hydrophobic Surfaces[J].Langmuir: The ACS Journal of Surfaces and Colloids,200423(23):10146-10149.
[27] Michael Nosonovsky;Bharat Bhushan.Roughness optimization for biomimetic superhydrophobic surfaces[J].Microsystem technologies,20057(7):535-549.
[28] F.Porcheron;P.A.Monson.Mean-Field Theory of Liquid Droplets on Roughened Solid Surfaces: Application to Superhydrophobicity[J].Langmuir: The ACS Journal of Surfaces and Colloids,20064(4):1595-1601.
[29] 李书宏;冯琳;李欢军;翟锦;宋延林;江雷;朱道本.柱状结构阵列碳纳米管膜的超疏水性研究[J].高等学校化学学报,2003(2):340-342.
[30] Jau-Ye Shiu;Chun-Wen Kuo;Peilin Chen;Chung-Yuan Mou.Fabrication of tunable superhydrophobic surfaces by nanosphere lithography[J].Chemistry of Materials,20044(4):561-564.
[31] 郑傲然;周明;杨加宏.仿生超疏水表面的制备及润湿性研究[J].功能材料,2007(11):1874-1876,1883.
[32] 房岩;孙刚;王同庆;丛茜;任露泉.蝴蝶翅膀表面非光滑形态疏水机理[J].科学通报,2007(3):354-357.
[33] 李小兵.微纳双重结构表面的接触角模型及其润湿性研究[J].润滑与密封,2014(01):43-45.
[34] Emmanuel Delamarche;Heinz Schmid;Bruno Michel;Hans Biebuyck.Stability of Molded Polydimethylsiloxane Microstructures[J].Advanced Materials,19979(9):741-746.
[35] Kenneth G.Sharp;Gregory S.Blackman;Nicholas J.Glassmaker;Anand Jagota;Chung-Yuen Hui.Effect of Stamp Deformation on the Quality of Microcontact Printing:Theory and Experiment[J].Langmuir: The ACS Journal of Surfaces and Colloids,200415(15):6430-6438.
[36] Pere Roca-Cusachs;Felix Rico;Elena Martinez;Jordi Toset;Ramon Farre;Daniel Navajas.Stability of Microfabricated High Aspect Ratio Structures in Poly(dimethylsiloxane)[J].Langmuir: The ACS Journal of Surfaces and Colloids,200512(12):5542-5548.
[37] 吴建刚;岳瑞峰;胡欢;曾雪锋;康明;王喆垚;刘理天.用于微流控芯片系统的超疏水表面的制备[J].微细加工技术,2006(3):36-39.
[38] Shuhong Li;Huanjun Li;Xianbao Wang;Yanlin Song;Yunqi Liu;Lei Jiang;Daoben Zhu.Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,200236(36):9274-9276.
[39] Cao LL;Hu HH;Gao D.Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials[J].Langmuir: The ACS Journal of Surfaces and Colloids,20078(8):4310-4314.
[40] Marmur A.From hygrophilic to superhygrophobic: Theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials[J].Langmuir: The ACS Journal of Surfaces and Colloids,200814(14):7573-7579.
[41] Yamamoto K;Ogata S.3-D thermodynamic analysis of superhydrophobic surfaces[J].Journal of Colloid and Interface Science,20082(2):471-477.
[42] 王奔;念敬妍;铁璐;张亚斌;郭志光.稳定超疏水性表面的理论进展*[J].物理学报,2013(14):362-376.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%