本文将有限覆盖技术应用于颗粒增强复合材料的数值模拟.通过引入数学与物重网格,将有限元的插值域与积分域分别定义在两个不同的覆盖上,即在数学网格上进行插值函数的构造,在物理网格上完成系统能量泛函的积分运算,最后通过覆盖权函数将二者联结在一起.它的优点是单元网格划分随意,不受复杂边界形状和二相材料界面的限制,单元可以是任意形状,是较之于有限元方法更普遍的数值模拟方法.最后给出了有限元网格覆盖颗粒增强复合材料的数值模拟算例,并与现有的方法进行了比较和讨论.
参考文献
[1] | 王勖成;邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2002 |
[2] | Th. Steinkopff;M. Sautter .Simulating the elasto-plastic behavior of multiphase materials by advanced finite element techniques Part I: a rezoning technique and the multiphase element method[J].Computational Materials Science,1995(1):10-14. |
[3] | Th. Steinkopff;M. Sautter .Simulating the elasto-plastic behavior of multiphase materials by advanced finite element techniques Part II: simulation of the deformation behavior of Ag-Ni composites[J].Computational Materials Science,1995(1):15-22. |
[4] | J Zhang;N Katsube .A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions[J].International Journal for Numerical Method in Engineering,1995,38:1635-1653. |
[5] | J Zhang;N Katsube .A polygonal element approach to random heterogeneous media with rigid ellipses or voids[J].Computer Methods in Applied Mechanics and Engineering,1997,148:225-234. |
[6] | S Ghosh;S N Mukhopadhyay .Material based finite element analysis of heterogeneous media involving dirichlet tessellations[J].Computer Methods in Applied Mechanics and Engineering,1993,104:211-247. |
[7] | Suresh Moorthy;Somnath Ghosh .Adaptivity and convergence in the Voronoi cell finite element model for analyzing heterogeneous materials[J].Computer Methods in Applied Mechanics and Engineering,2000(1):37-74. |
[8] | 石根华;裴觉民.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997 |
[9] | Ghosh S.;Moorthy S.;Lee KH. .MULTIPLE SCALE ANALYSIS OF HETEROGENEOUS ELASTIC STRUCTURES USING HOMOGENIZATION THEORY AND VORONOI CELL FINITE ELEMENT METHOD[J].International Journal of Solids and Structures,1995(1):27-62. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%