本文针对任意形状功能梯度材料壳体结构,从一般性壳体曲面理论出发,给出相应几何方程、平衡方程,在物理方程中引入沿壳体厚度的材料性能梯度分布,建立起膜弯耦联的功能梯度壳体的一般性基本方程与边界条件、初始条件,可作为各种功能梯度壳体力学分析的理论基础.
参考文献
[1] | Koizumi M .The concept of FGM[J].GeramicTrans Functionally Gradient Materials,1993,34:3-10. |
[2] | Hirai T;Chen L .Recent and prospective development of functionally graded materials in Japan[J].Materials Science Forum,1999,308-311:509-514. |
[3] | Chen Weiqiu;Ding Haojiang .BENDING OF FUNCTIONALLY GRADED PIEZOELECTRIC RECTANGULAR PLATES[J].Acta Mechanica Solida Sinica,2000(4):312-319. |
[4] | Cheng ZQ.;Kitipornchai S.;Lim CW. .Three-dimensional asymptotic approach to inhomogeneous and laminated piezoelectric plates[J].International Journal of Solids and Structures,2000(23):3153-3175. |
[5] | C. W. Lim;L. H. He .Exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting[J].International Journal of Mechanical Sciences,2001(11):2479-2492. |
[6] | Yang J;Chen HS .Dynamic response of initially stressed functionally graded rectangular thin plates[J].Computers & Structures,2001,54:497-508. |
[7] | 沈惠申.功能梯度复合材料板壳结构的弯曲、屈曲和振动[J].力学进展,2004(01):53-60. |
[8] | C. T. Loy;K. Y. Lam;J. N. Reddy .Vibration of functionally graded cylindrical shells[J].International Journal of Mechanical Sciences,1999(3):309-324. |
[9] | Han X.;Xu D.;Liu GR. .Transient responses in a functionally graded cylindrical shell to a point load[J].Journal of Sound and Vibration,2002(5):783-805. |
[10] | Ng TY.;Liew KM.;Reddy JN.;Lam KY. .Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading[J].International Journal of Solids and Structures,2001(8):1295-1309. |
[11] | S.C. Pradhan;C.T. Loy;K.Y. Lam .Vibration characteristics of functionally graded cylindrical shells under various boundary conditions[J].Applied acoustics,2000(1):111-129. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%