欢迎登录材料期刊网

材料期刊网

高级检索

根据经实验验证的玻璃钢(GFRP)拉挤工艺过程数学模型,以数值模拟结果为样本数据,建立反向传播(BP)神经网络,得到拉挤工艺参数(固化温度、拉挤速度)与GFRP固化度间非线性相关关系.采用神经网络结合带精英策略的快速非支配排序遗传算法(NSGA-Ⅱ)解决拉挤过程中固化炉温度和拉挤速度多目标优化问题,得到了拉挤优化问题的Pareto最优解集.实验结果表明,优化后的工艺参数能有效提高生产率,降低固化炉温度,效果显著.

参考文献

[1] Reinforced Plastics Group .Globalisation of the pultrusion industry[J].Reinforced Plastics,2006(5):38-41.
[2] Reinforced Plastics Group .Pultruded composites compete with traditional construction materials[J].Reinforced Plastics,2006(5):20-27.
[3] Richard Stewart .Pultrusion industry grows steadily in US[J].Reinforced Plastics,2002(6):36-39.
[4] 谢怀勤,陈幸开,梁钒.玻璃钢拉挤工艺过程非稳态温度场与固化度数值模拟与试验[J].玻璃钢/复合材料,2010(01):73-76,81.
[5] 刘红梅,王少萍,欧阳平超.基于GRNN网络和遗传算法的旋翼动平衡调整[J].北京航空航天大学学报,2008(05):507-511.
[6] H.Kurtaran;B.Ozcelik;T.Erzurunlu.Warpnge optimizatiou of a bus ceiling lamp base using neural network model and genetic algorithm[J].Journal of Materials Processing Technology,2005(169):314-319.
[7] 焦俊婷,于霖冲.基于ANN的复合材料变厚度壳体固化变形预测[J].玻璃钢/复合材料,2006(05):3-5,31.
[8] 谢怀勤,沈军,丛培海.人工神经网络结合遗传算法对CFWRP固化制度的优化[J].玻璃钢/复合材料,2007(02):3-6.
[9] 谢怀勤,王海龙,李叶斌.人工神经网络结合遗传算法对FWRP张力制度的优化[J].玻璃钢/复合材料,2007(04):3-5,17.
[10] K.Deb;S.Agarwal;T.Meyarivan .A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].Evolutionary Computation,2002,6(02):182-197.
[11] P.Murugan;S.Kannan;S.Baskar .NSGA-Ⅱ algorithm for multi-objective generation expansion planning problem[J].Electric Power Systems Research,2009,79:600-628.
[12] S.Majumdar;K.Mitra;S.Raha.Optimized species growth in epoxy polymerization with real-coded NSGA-Ⅱ[J].Polymer,2005(46):11858-11869.
[13] Elias G.Bekele;John W.Nicklow.Multi-objective automatic calibratiou of SWAT using NSGA-Ⅱ[J].Journal of Hydrology,2007(341):165-176.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%