通过选用含不同官能团的硅烷偶联剂3-甲基丙烯酰氧丙基三甲氧基硅烷(MPS)、γ-氨丙基三甲氧基硅烷(APS)和γ-氯丙基三甲氧基硅烷(CPS)处理玻璃纤维,然后通过原位聚合的方法制造了连续纤维增强的聚甲基丙烯酸甲酯(PMMA)复合材料.研究结果表明,经过这三种偶联剂处理的玻璃纤维与基体树脂在界面分别形成了化学键、范德华力和氢键.红外、动态力学分析和扫描电镜研究表明,复合材料的界面粘接强度顺序为:MPS> CPS> APS.MPS处理的复合材料具有最高的弯曲强度,而CPS处理的复合材料具有最佳的冲击韧性和断裂伸长率.
参考文献
[1] | Plueddemann E P.Silane Coupling Agents[M].New York:Plenum Press,1991 |
[2] | Manson J A;Leslie H S.Polymer Blends and Composites[M].New York,London:Plenum Press,1976 |
[3] | Allred R E;Schuster D M.The impact toughness of discontinuous boron-reinforced epoxy composites[J].Journal of Materials Science,1973(08):245-250. |
[4] | Piggott M R.Theoretical Estimation of Fracture toughness of Fibrous Composites[J].Journal of Materials Science,1970(05):669-675. |
[5] | Vorenkamp E J;Challa G.Influence of chlorination of poly (vinyl chloride) on miscibility with poly(methyl methacrylate)[J].Polymer,1988(29):86-92. |
[6] | Allard D E;Prud'homme R E.Miscibility of Poly(caprolactone)/Chlorinated Polypropylene and Poly (caprolactone)/Poly (chlorostyrene) Blends[J].Journal of Applied Polymer Science,1982(27):559-568. |
[7] | Walsh D J;Higgins J S.The compatibility of poly(methyl methacrylate) and chlorinated polyethylene[J].Polymer,1982(23):336-339. |
[8] | Zhikuan C;Ruona S;Walsh D J;Higgins J S.A thermodynamic interpretation of the compatibility of chlorinated polyethylene with poly (methyl methacrylate)[J].Polymer,1983(24):263-270. |
[9] | Bielinski D M;Affrossman S;Hartahorne M;Pethrick R A.Properties of chlorinated polyethylene waxes/poly (methyl methacrylate)blends:dependence of surface composition on wax chlorine content and blend composition[J].Polymer,1995(36):4899-4905. |
[10] | Li D.;Brisson J. .Hydrogen bonds in poly(methyl methacrylate) poly(4-vinyl phenol) blends - 1. Quantitative analysis using FTir spectroscopy[J].Polymer: The International Journal for the Science and Technology of Polymers,1998(4):793-800. |
[11] | 陈现景,岳云龙,于晓杰,祝一民.界面改性方法对玻纤增强聚丙烯复合材料力学性能的影响[J].玻璃钢/复合材料,2008(01):14-16. |
[12] | 傅宏俊,马崇启,王瑞.玄武岩纤维表面处理及其复合材料界面改性研究[J].纤维复合材料,2007(03):11-13. |
[13] | Blum, FD;Jo, H .Characterization of the interface in polymer-silica composites containing an acrylic silane coupling agent[J].Chemistry of Materials,1999(9):2548-2553. |
[14] | Fyfe CA.;Niu J. .DIRECT SOLID-STATE C-13 NMR EVIDENCE FOR COVALENT BOND FORMATION BETWEEN AN IMMOBILIZED VINYLSILANE LINKING AGENT AND POLYMER MATRICES[J].Macromolecules,1995(11):3894-3897. |
[15] | Nielson LE.Mechanical Properties of Polymers and Composites[M].New York:Dekker,1974 |
[16] | Murayama T.Dynamic Mechanical Analysis of Polymeric Material[M].Elsevier,Armsterdam,1978 |
[17] | 祝保林,王君龙.偶联剂对SiO2/CE复合材料动态力学性能的影响[J].玻璃钢/复合材料,2009(02):33-36,18. |
[18] | 郑安呐,胡福增.树脂基复合材料界面结合的研究Ⅰ:界面分析及界面剪切强度的研究方法[J].玻璃钢/复合材料,2004(05):12-15,23. |
[19] | Chua P S .Dynamic Mechanical Analysis Studies of the Interphasc[J].Polymer Composites,1987,8(05):308-313. |
[20] | Dong S;Gauvin R .Application of Dynamical Analysis for the Study of the Interfacial Region in Carbon Fiber/Epoxy Composite Materials[J].Polymer Composites,1993,14(05):414-420. |
[21] | Matisons JG.;Rosenholm JB.;Jokinen AE. .TREATED GLASS FIBERS .1. ADSORPTION OF AN ISOCYANURATE SILANE[J].Journal of Colloid and Interface Science,1997(1):263-268. |
[22] | Lin H;Day D E;Stoffer J O.Optical and Mechanical Properties of Optically Transparent Poly (Methyl Methacrylate)[J].Polymer Engineering and Science,1992(32):344-350. |
[23] | Bajaj P;Jha N K;Kuman R A.Effect of Coupling Agent on the Mechanical Properties of Mica/Epoxy and Glass Fiber/Mica/Epoxy Composites[J].Journal of Applied Polymer Science,1992(44):1921-1930. |
[24] | Shih G C;Ebert L J.Interface strength effects on the compressiveflexural/shear failure mode transition of composites subjected to four-point bending[J].Composites,1986(17):309-320. |
[25] | Gassan J;Bledzki A K.The Influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites[J].Composites Part A:Applied Science and Manufacturing,1997(28):1001-1005. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%