{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了研究镍氢动力电池正极材料氢氧化,收集目前常用的镍氢动力电池用正极材料—普通氢氧化,制备独有技术产品钙镁掺杂氢氧化.通过对该3大类产品进行高温大电流性能的测试表明,适用于镍氢动力电池的氢氧化正极材料为及钙镁掺杂氢氧化.再考察不同量的氢氧化及不同配比的钙镁氢氧化,对量及钙镁掺杂量进行研究,得出主要用于镍氢动力电池的氢氧化产品为量为Co3.5%的氢氧化及Ca2 Mg0.5、Ca1.5 Mg0.2、Ca1 Mg0.3等3种成分的钙镁氢氧化.","authors":[{"authorName":"于丽敏","id":"83522540-efb8-423f-af89-4918e6612d52","originalAuthorName":"于丽敏"},{"authorName":"蒋文全","id":"0b85bf49-6122-43df-9924-4c0900cec51e","originalAuthorName":"蒋文全"},{"authorName":"傅钟臻","id":"c0cd2b8f-2acd-4f05-b0e2-f270eb2a1cf8","originalAuthorName":"傅钟臻"},{"authorName":"郭荣贵","id":"e6fb1640-17b0-4ff0-a262-e36fcb879879","originalAuthorName":"郭荣贵"},{"authorName":"李涛","id":"01719eb7-d304-40c6-b398-4da6c6f1d188","originalAuthorName":"李涛"},{"authorName":"杨慧","id":"445b522a-6b9c-439b-9a36-2a40d9631f6c","originalAuthorName":"杨慧"}],"doi":"","fpage":"58","id":"0256fdbf-aff4-4e1c-b178-161fecf136be","issue":"18","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"604c85ba-c795-45fc-9932-3c34c2fb4f2e","keyword":"镍氢动力电池","originalKeyword":"镍氢动力电池"},{"id":"b3d1865b-f0d6-49a2-82fc-c07f75d7ccd5","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"44a98a61-f0ab-4571-88e4-89398788deea","keyword":"氢氧化","originalKeyword":"覆钴型氢氧化镍"},{"id":"162d4fbc-3024-4692-90d4-3fd1811beffd","keyword":"钙镁氢氧化","originalKeyword":"钙镁型氢氧化镍"}],"language":"zh","publisherId":"cldb201118016","title":"镍氢动力电池正极材料的研究","volume":"25","year":"2011"},{"abstractinfo":"采用化学共沉积方法,在球形Ni(OH)2表面包不同含量的Co(OH)2.用扫描电子显微镜(SEM)和恒电流充放电技术测试其表面微观形貌和充放电性能.研究结果表明:倍率放电性能与包Co(OH)2的量有一定的关系,在高倍率放电条件下,包覆层含Co(OH)2量最佳范围为2% ~ 3.6%,镶嵌Co(OH)2包覆层的球形Ni(OH)2具有良好的放电容量和大电流充放电性能.","authors":[{"authorName":"赫文秀","id":"5c1eb37d-e5fb-463a-938d-21f858ad1955","originalAuthorName":"赫文秀"},{"authorName":"张永强","id":"f336d8f4-dfd2-45f7-95a9-144c30242e1c","originalAuthorName":"张永强"},{"authorName":"蒋文全","id":"1d7f7547-29ce-4b75-9e9f-ce98ca531cc7","originalAuthorName":"蒋文全"},{"authorName":"张文广","id":"ab0fe902-ff34-4bb3-900a-681064e34f7a","originalAuthorName":"张文广"}],"doi":"","fpage":"1425","id":"0f5b4d23-b1cc-4dec-9467-aba23f3632fd","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"178810e8-c428-484a-ac34-7a959c4fe19c","keyword":"球Ni(OH)2","originalKeyword":"球型Ni(OH)2"},{"id":"5449b3ef-de8f-467c-bcd7-9ff51cda97df","keyword":"氢氧化钴","originalKeyword":"氢氧化钴"},{"id":"c3152dc6-0eea-4a67-92b1-b82f39b04424","keyword":"包","originalKeyword":"包覆"},{"id":"368fee62-4b93-445c-956e-e008d21b7692","keyword":"大电流","originalKeyword":"大电流"},{"id":"df4a5054-8627-4d9a-8332-9b49157955b5","keyword":"放电容量","originalKeyword":"放电容量"}],"language":"zh","publisherId":"rgjtxb98201205051","title":"氢氧化的电化学性能研究","volume":"41","year":"2012"},{"abstractinfo":"通过充放电曲线和交流阻抗谱的测定探讨了纳米级氢氧化氢氧化表面包复CoOOH以及箔上电镀层对氢氧化粉末压制的电极性能的影响.结果表明,纳米级氢氧化有较快的活化能力,CoOOH包Ni(OH)2则有较高的放电容量,而比例适当的纳米复合电极才有更好的电化学性能.氢氧化表面包复CoOOH可改善电极的充放电性能;箔上镀可大大降低电极过程的电荷转移电阻;含量大于3%后,虽然活化速度有所下降,但是大电流充放电时,电极活性物的利用率更高,放电容量更大.纳米级Ni(OH)2含量大于30%后,电极的活化速度不仅未能加快,反而略有减慢,而且容量也降低.","authors":[{"authorName":"郑辅养","id":"824ea3bb-f810-4da0-afc4-ed8bafb562ab","originalAuthorName":"郑辅养"},{"authorName":"余兴增","id":"a81e25c7-e41c-468b-8095-ac4b7adf24b3","originalAuthorName":"余兴增"},{"authorName":"蔡长寿","id":"047fbd68-b792-4c35-b5d4-0d6dcc7b6338","originalAuthorName":"蔡长寿"}],"doi":"","fpage":"167","id":"6c189f2e-48c3-4cea-b695-d0e27a5c7963","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"45ef97d0-ee6d-4e14-951e-05e08fbfd740","keyword":"纳米复合电极","originalKeyword":"纳米复合镍电极"},{"id":"4a48a116-1a10-4741-8116-e45d1ca5c3aa","keyword":"表面包复CoOOH","originalKeyword":"表面包复CoOOH"},{"id":"55b21d35-32b0-4f5a-b762-bba92bc3b310","keyword":"镀层","originalKeyword":"镀钴层"}],"language":"zh","publisherId":"gncl200302019","title":"纳米级氢氧化电极性能的影响","volume":"34","year":"2003"},{"abstractinfo":"球形氢氧化的高温性能已经成为制约其应用于动力MH-Ni电池的主要因素. 本文通过控制结晶的方法, 在?球形氢氧化表面包了一层Yb(OH)3, 并研究了不同包量对其常温和高温性能的影响. 研究结果表明: 表面包了Yb(OH)3的球形氢氧化, 其常温性能有所降低, 但是高温性能得到了很大的提高. 在60℃进行1C充放电条件下, 包量为2%(摩尔比)的球形氢氧化其高温性能最好, 其高温容?量保持率可以达到92%.","authors":[{"authorName":"李稳","id":"bef571e7-0b27-4a4f-83b9-f0850b767d0a","originalAuthorName":"李稳"},{"authorName":"姜长印","id":"cc7c5159-08d9-416c-82e9-dea7a8e1a759","originalAuthorName":"姜长印"},{"authorName":"万春荣","id":"a7567243-eae7-4356-bd8b-1173283a3f2e","originalAuthorName":"万春荣"}],"categoryName":"|","doi":"","fpage":"121","id":"0f759dbd-801c-449c-9e32-ac668028c098","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"b93ac434-11c5-4b59-803c-9c4b16bb071e","keyword":"球形氢氧化","originalKeyword":"球形氢氧化镍"},{"id":"11e8af81-2fe8-4cc0-8e5a-34581db6342c","keyword":" high-temperature performance","originalKeyword":" high-temperature performance"},{"id":"c0a6c2ca-c2c7-4852-8a87-496bd24c9c69","keyword":" surface coating","originalKeyword":" surface coating"},{"id":"3a1ce3fd-e1d3-47de-a4c5-5757f460e84e","keyword":" ytterbium hydroxide","originalKeyword":" ytterbium hydroxide"}],"language":"zh","publisherId":"1000-324X_2006_1_19","title":"表面包Yb(OH)3的球形氢氧化的高温性能研究","volume":"21","year":"2006"},{"abstractinfo":"球形氢氧化的高温性能已经成为制约其应用于动力MH-Ni电池的主要因素.本文通过控制结晶的方法,在球形氢氧化表面包了一层Yb(OH)3,并研究了不同包量对其常温和高温性能的影响.研究结果表明:表面包了Yb(OH)3的球形氢氧化,其常温性能有所降低,但是高温性能得到了很大的提高.在60℃进行1C充放电条件下,包量为2%(摩尔比)的球形氢氧化其高温性能最好,其高温容量保持率可以达到92%.","authors":[{"authorName":"李稳","id":"c48a015b-ddc6-441f-b201-3918292e9bce","originalAuthorName":"李稳"},{"authorName":"姜长印","id":"71bb3ddd-2066-4937-8e32-72eae949ab31","originalAuthorName":"姜长印"},{"authorName":"万春荣","id":"ff3d8139-39d9-4ef5-80db-c82c593b4005","originalAuthorName":"万春荣"}],"doi":"10.3321/j.issn:1000-324X.2006.01.020","fpage":"121","id":"631e3363-0a0f-46ac-a0af-609aa3cc11ed","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"aa6da4b0-4eba-48e4-83b3-6688e3de7719","keyword":"球形氢氧化","originalKeyword":"球形氢氧化镍"},{"id":"20e4beb3-2523-4e8d-97a3-f59cfb5cf98a","keyword":"高温性能","originalKeyword":"高温性能"},{"id":"3265ce2f-6ae5-4936-af27-1c41a3f0adcf","keyword":"表面包","originalKeyword":"表面包覆"},{"id":"f007a2be-7066-4d1e-9cf2-fdac2179c9cd","keyword":"氢氧化镱","originalKeyword":"氢氧化镱"}],"language":"zh","publisherId":"wjclxb200601020","title":"表面包Yb(OH)3的球形氢氧化的高温性能研究","volume":"21","year":"2006"},{"abstractinfo":"在自行设计制作的管式反应器中,采用化学沉积包的方法在球形氢氧化表面包了一层Co(OH)2膜,通过实验发现,pH值和络合剂的浓度对包反应有很重要的影响.表面量不同,其表面形貌、电化学循环稳定性和大电流充放电性能也有很大差异.本文利用X射线衍射仪、扫描电镜和恒流充放电技术测试了其相结构、表面微观形貌和循环寿命等方法,确定了合适的氢氧化表面量.","authors":[{"authorName":"赫文秀","id":"1b12bf70-e186-4d3e-b6c8-893b5c7c4715","originalAuthorName":"赫文秀"},{"authorName":"张永强","id":"9db6e00c-6b67-4d3c-9eaf-fb3061a4178a","originalAuthorName":"张永强"},{"authorName":"蒋文全","id":"97c76636-4c8d-4b68-af1b-d22c3dd21051","originalAuthorName":"蒋文全"},{"authorName":"傅钟臻","id":"9ab25018-f3d3-40ce-a2b3-a35b78619b0d","originalAuthorName":"傅钟臻"},{"authorName":"于丽敏","id":"be142aa6-e7b9-4eeb-9376-a1fe49a7aac7","originalAuthorName":"于丽敏"},{"authorName":"张文广","id":"ae332736-e9ba-46c5-81d2-da2e5563fdfe","originalAuthorName":"张文广"}],"doi":"","fpage":"276","id":"d9c69bd8-b712-42c1-ad90-003345f63707","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"4de9132e-6a23-495a-9d5a-91c03b41420a","keyword":"管式反应器","originalKeyword":"管式反应器"},{"id":"a417c5b4-52e8-4e85-9361-24a3d67d3a21","keyword":"球形氢氧化","originalKeyword":"球形氢氧化镍"},{"id":"2586a3b4-7b3d-4b1b-95a0-a08f4347e5da","keyword":"Co(OH)2","originalKeyword":"Co(OH)2"},{"id":"b085860d-6c88-48d9-9059-9728f209a805","keyword":"表面包","originalKeyword":"表面包覆"}],"language":"zh","publisherId":"gsytb200802013","title":"球形Co氢氧化的合成及性能研究","volume":"27","year":"2008"},{"abstractinfo":"利用共沉淀法,制备出具有微纳结构的球形氢氧化,并通过掺杂镁锌,制备出掺杂球形氢氧化.通过XRD和SEM表征了掺杂氢氧化的晶体结构和形貌,采用循环伏安测试和充放电循环测试研究了不同掺杂元素对氢氧化电化学性能的影响.结果表明,同时掺杂1%、1%锌、1%镁的氢氧化样品在高温下具有优异的电性能表现.在65℃时,其带电比容量、△Ea.c、△Ea.o分别为288 mAh/g、0.38 V、0.12 V.","authors":[{"authorName":"陈建铭","id":"2b4cdf4d-a1ae-4183-be87-440f2be0af24","originalAuthorName":"陈建铭"},{"authorName":"孙静涛","id":"d3932574-07dc-4f83-a207-3540ec9daa87","originalAuthorName":"孙静涛"},{"authorName":"宋云华","id":"bd6bccb5-b47a-49b9-b624-b6f9ccd78cd8","originalAuthorName":"宋云华"}],"doi":"","fpage":"1539","id":"7ff5bcca-9410-42d7-8a8d-f4553beda861","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"39696d50-c6f6-4354-8907-36a9d9eaa551","keyword":"微纳结构","originalKeyword":"微纳结构"},{"id":"7b3dc7ec-c5c2-4176-90c1-0b0b574f3f62","keyword":"高温电性能","originalKeyword":"高温电性能"},{"id":"b3c7c183-5e2e-4ea6-b3ba-0bcdefb2edba","keyword":"氢氧化","originalKeyword":"氢氧化镍"},{"id":"7deee082-e00b-43e4-8c04-3b49cabc3a58","keyword":"共沉淀法","originalKeyword":"共沉淀法"}],"language":"zh","publisherId":"rgjtxb98201606019","title":"掺杂镁锌的微纳结构球形氢氧化的高温电性能研究","volume":"45","year":"2016"},{"abstractinfo":"采用水热法制备了掺杂的纳米花瓣状Ni(OH)2,讨论了掺杂量对产物形貌、结构和电化学性能的影响.结果表明,不同摩尔分数掺杂的样品都呈现α/β混合相花瓣微球,其比表面积均在280m2/g以上,远高于普通球形氢氧化(5~10m2/g).电化学性能测试表明,添加剂显著提高了氢氧化高倍率放电容量和循环稳定性能,1.0C倍率时摩尔分数10%的样品放电容量可达430.1mAh/g(以纯氢氧化计),接近α-Ni(OH)2的理论容量(480mAh/g),3.0C倍率时其放电容量(367.1mAh/g)仅比0.2C时的放电容量(406.9mAh/g)衰减9.8%.","authors":[{"authorName":"孙海峰","id":"2156693e-e0f6-446d-9f24-2f9fd3f79ac1","originalAuthorName":"孙海峰"},{"authorName":"蒋文全","id":"a6d0ac9f-b265-49bc-9f86-87697fe9db71","originalAuthorName":"蒋文全"},{"authorName":"于丽敏","id":"cca24107-752b-477f-b457-8c090c5f4995","originalAuthorName":"于丽敏"},{"authorName":"傅钟臻","id":"a1be8f7e-8fcd-4715-991f-a868f1ff62fb","originalAuthorName":"傅钟臻"},{"authorName":"郭荣贵","id":"31befec1-fd02-43ff-9555-18bffca1163d","originalAuthorName":"郭荣贵"},{"authorName":"李涛","id":"f6d57eae-af8d-4feb-8011-e8f35d6dfd4b","originalAuthorName":"李涛"},{"authorName":"杨慧","id":"159a8102-8a24-43f9-b6f6-c514e16d7449","originalAuthorName":"杨慧"}],"doi":"","fpage":"49","id":"ced25f89-0309-48f5-b25d-97cbd536669e","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5874c55a-5357-4b6e-8323-3a05a215a01d","keyword":"氢氧化","originalKeyword":"氢氧化镍"},{"id":"b152f6be-cb9c-464a-8c21-83347fb8d782","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"baa9599a-664e-4425-a577-9bd30ee9879b","keyword":"α/β混合相","originalKeyword":"α/β混合相"},{"id":"489c5f89-bbb7-4a32-9c18-499e5eb1489f","keyword":"放电性能","originalKeyword":"放电性能"}],"language":"zh","publisherId":"cldb201108014","title":"掺杂纳米花瓣状氢氧化的制备及其电化学性能研究","volume":"25","year":"2011"},{"abstractinfo":"在惰性气氛保护下, 采用\"梯度共晶\"-络合共沉积方法, 在球形Ni(OH)2表面包不同含量的Co(OH)2. 利用X射线衍射、扫描电镜和恒电流充放电技术测试其相结构、表面微观形貌和充放电性能. 研究结果表明: 镶嵌Co(OH)2包覆层的球形Ni(OH)2具有良好的放电容量和大电流充放电性能. 倍率放电性能与包Co(OH)2的量有一定的关系. 在0.8C充电/0.4C放电条件下, 包覆层最佳含Co(OH)2量为0.8%; 而在1C充放电、 2C充电/1C放电和3C充放电条件下, 包覆层含Co(OH)2量最佳范围为2%~3.6%. 表面包价态稳定Co(OH)2是改善氢氧化电极大电流充放电性能的一条有效途径.","authors":[{"authorName":"张文广","id":"36d0d8ad-601d-47fd-be57-02e1d4a446fa","originalAuthorName":"张文广"},{"authorName":"蒋文全","id":"b8f36b0e-64b6-4b9c-82c5-42c2c33f87a5","originalAuthorName":"蒋文全"},{"authorName":"于丽敏","id":"df95a0fc-f9f0-4f13-a904-c8fbf0fa1dbb","originalAuthorName":"于丽敏"},{"authorName":"傅钟臻","id":"60142e41-e930-4f8a-ad5b-2b4e49d780db","originalAuthorName":"傅钟臻"},{"authorName":"夏雯","id":"386eaf59-dbdf-4957-8eb4-94d0c7d63c73","originalAuthorName":"夏雯"}],"doi":"10.3969/j.issn.0258-7076.2007.06.013","fpage":"784","id":"3aeab4f3-b8a3-4fa3-b966-2187fc931acb","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"a084fc05-74e8-45ae-bab2-1ce72efba9a2","keyword":"球Ni(OH)2","originalKeyword":"球型Ni(OH)2"},{"id":"f7844093-36ea-4306-8067-555a51af7b60","keyword":"氢氧化钴","originalKeyword":"氢氧化钴"},{"id":"e556a491-70c1-4290-b586-93015ff65302","keyword":"包","originalKeyword":"包覆"},{"id":"80f76793-ce48-4caf-97ae-b629ad63ba63","keyword":"大电流","originalKeyword":"大电流"},{"id":"f1c5d52f-7d03-4c63-baff-fbcdd4fbd5e7","keyword":"放电容量","originalKeyword":"放电容量"}],"language":"zh","publisherId":"xyjs200706013","title":"氢氧化表面包Co(OH)2及其大电流充放电性能","volume":"31","year":"2007"},{"abstractinfo":"采用电化学共沉积技术在泡沫基体上制备了掺杂氢氧化钴氢氧化电极,研究了其容量特性.结果表明:0.5mol/L Ni(NO3)2和0.25mol/L Co(NO3)2溶液以体积比Ni(NO3)2:Co(NO3)2=8.5:1.5混合作为沉积溶液时,所得掺氢氧化电极性能最佳.XRD和SEM分析表明:所得产物为掺杂α-Co(OH)2的α-Ni(OH)2,晶粒尺寸为2~10 nm,其粒子形貌呈球状,粒径在0.5~2μm之间.将其组装成C/Ni(OH)2模拟超级电容器,在充放电电流为5mA的条件下,循环40次后比电容为460 F/g,其比电容数值随循环次数增加逐渐趋于稳定.","authors":[{"authorName":"于维平","id":"023999b6-adee-4a52-9e85-0d87b76f631c","originalAuthorName":"于维平"},{"authorName":"杨晓萍","id":"56a271a0-7ab2-4869-938f-cee366935648","originalAuthorName":"杨晓萍"},{"authorName":"孟令款","id":"3e91815e-e46d-4025-8a68-7f11e3fa0d1e","originalAuthorName":"孟令款"},{"authorName":"刘兆哲","id":"52045e69-4ad6-4be0-9c49-be6d28aa0d07","originalAuthorName":"刘兆哲"}],"doi":"10.3969/j.issn.1009-6264.2005.06.008","fpage":"30","id":"542119f1-73f8-4d5c-b8cf-b0e2a2181c0a","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"1170fc1e-d71d-445a-8616-c3275866f4d1","keyword":"电化学","originalKeyword":"电化学"},{"id":"86f133dc-a83b-4083-aa27-37cfb18f7f0c","keyword":"共沉积","originalKeyword":"共沉积"},{"id":"a22d93db-5f56-4f6e-b84a-bdbef2729f29","keyword":"氢氧化","originalKeyword":"氢氧化镍"},{"id":"77dff65e-a2e6-41b2-bae3-203066af132c","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"fedf4a21-254f-4246-bc02-41a0c37170cd","keyword":"正极","originalKeyword":"正极"}],"language":"zh","publisherId":"jsrclxb200506008","title":"电沉积法制备掺杂氢氧化电极材料及其容量特性","volume":"26","year":"2005"}],"totalpage":5399,"totalrecord":53988}