欢迎登录材料期刊网

材料期刊网

高级检索

基于位错理论探讨了材料大应变条件下的加工硬化率曲线及动态再结晶的拐点判据,利用在变形温度1050~1100℃、应变速率0.001~1s-1条件下等温恒应变速率压缩试验获得的应力-应变数据,采用加工硬化率处理方法,研究了TA15钛合金β区变形的动态再结晶临界条件,并应用Zener-Hollomon参数建立了临界应变模型.结果表明,TA15钛合金在本试验条件下呈现两种曲线特征类型的应力-应变曲线,其θ-σ曲线均呈现拐点及-(e)θ/(e)σ-σ曲线上出现最小值;临界应变与峰值应变之间具有一定的相关性,即εc/εp=0.62;临界应变与Z参数之间的函数关系为εc=1.72×10-2Z0.0605.

参考文献

[1] E.I.POLIAK;J.J.JONAS .A ONE-PARAMETER APPROACH TO DETERMINING THE CRITICAL CONDITIONS FOR THE INITIATION OF DYNAMIC RECRYSTALLIZATION[J].Acta materialia,1996(1):127-136.
[2] E. I. POLIAK;J. J. JONAS .Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation[J].ISIJ International,2003(5):684-691.
[3] G.V.S.S. Prasad;M. Goerdeler;G. Gottstein .Work hardening model based on multiple dislocation densities[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(0):231-233.
[4] ROLLETT A D;KOCKS U F .A review of the stages of work hardening[J].Solid State Phenomena,1993,35-36:1-18.
[5] RYAN N D;MCQUEEN H J .Dynamic softening mechanisms in 304 austenitic stainless steel[J].Canadian Metallurgical Quarterly,1990,29(02):147-162.
[6] G. Gottstein;E. Brunger;M. Frommert;M. Goerdeler;M. Zeng .Prediction of the critical conditions for dynamic recrystallization in metals[J].Zeitschrift fur Metallkunde,2003(5):628-635.
[7] E. I. POLIAK;J. J. JONAS .Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation[J].ISIJ International,2003(5):692-700.
[8] Abbas NAJAFIZADEH;John J. JONAS .Predicting the Critical Stress for Initiation of Dynamic Recrystallization[J].ISIJ International,2006(11):1679-1684.
[9] 黄光杰,钱宝华,汪凌云,J.J.Jonas.AZ31镁合金初始动态再结晶的临界条件研究[J].稀有金属材料与工程,2007(12):2080-2083.
[10] Y. Estrin .Dislocation theory based constitutive modelling: foundations and applications[J].Journal of Materials Processing Technology,1998(0):33-39.
[11] Y. Estrin .A dislocation-based model for all hardening stages in large strain deformation[J].Acta materialia,1998(15):5509-5522.
[12] T. Ungár;M. Zehetbauer .Stage IV work hardening in cell forming materials, part II: A new mechanism[J].Scripta materialia,1996(12):1467-1473.
[13] G. Gottstein;M. Frommert;M. Goerdeler;N. Schaefer .Prediction of the critical conditions for dynamic recrystallization in the austenitic steel 800H[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):604-608.
[14] NABARRO F;BASINSKI Z S;HOLT D B .The plasticity of pure single crystals[J].Advances in Physics,1964,13(50):193-323.
[15] MECKING H;KOCKS U F .Kinetics of flow and strain-hardening[J].Acta Metallurgica,1981,29(11):1865-1875.
[16] KOCK U F .Laws for work-hardening and low-temperature creep[J].ASME Journal of Engineering Materials and Technology,1976,98(01):76-85.
[17] GIL S J;VAN H P;AERNOUDT E .Large strain work hardening and textures[J].Progress in Materials Science,1980,25(2-4):69-134.
[18] PANTLEON W.Stage IV work-hardening related to disorientations in dislocation structures[J].,2004:387-389:257-261.
[19] MECKING H.Dislocation modelling of physical systems[M].Pergamon Press,1981:197-211.
[20] E. I. POLIAK;J. J. JONAS .Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation[J].ISIJ International,2003(5):684-691.
[21] MARSUBARA Y;TSUJI N;SAITO Y.Dynamic recrystallization of ferrite in IF steel[A].Wollongong,Australia,1997:653-659.
[22] 徐文臣,单德彬,李春峰,吕炎.TA15钛合金的动态热压缩行为及其机理研究[J].航空材料学报,2005(04):10-15,19.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%