欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble-1500热模拟机对新型第三代镍基粉末高温合金FGH98Ⅰ在不同变形温度(950~1150℃)及不同变形速率(0.0003~1s-1)下高温变形行为进行了研究,绘制了动态RTT曲线,并建立了合金的热变形本构关系.结果表明:合金的流变应力随变形温度的升高和应变速率的降低而降低,当变形温度≤1100℃、应变速率≥0.0003s-1时,其流变应力随应变量增加呈动态再结晶特征;在应变速率≤0.01s-1的高温变形条件下,其动态再结晶的开始时间与变形温度无线性关系;实验验证了采用考虑应变量的双曲正弦模型能较好地反映合金在热变形过程中流变应力的变化规律.

参考文献

[1] 胡本芙;章守华 .镍基粉末高温合金FGH95涡轮盘材料研究[J].金属热处理学报,1997,18(03):28-36.
[2] 邹金文;王旭青 .FGH96与FGH95粉末高温合金的组织与性能研究[J].材料工程,2002,32(增刊):58-61.
[3] 吴凯,刘国权,胡本芙,吴昊,张义文,陶宇,刘建涛.合金元素对新型镍基粉末高温合金的热力学平衡相析出行为的影响[J].北京科技大学学报,2009(06):719-727.
[4] YUKAMA N;MORINAGA M;MURATA Y.High performance single crystal superalloys developed by the d-electrons concept[A].Warrendale:TMS,1988:225-234.
[5] GABB T P;O′CONNOR K .High temperature,low strain rate forging of advanced disk alloy ME3 NASA/TM-2001-210901[R].Cleveland:NASA GRC,2001.
[6] HURON E S;BAIN K R;MOURER D P.Development of high temperature capability P/M disk superalloys[A].Pennsylvania:TMS,2008:181-189.
[7] GABB T P;GAYDA J .Forging of advanced disk alloy LSHR NASA/TM-2005-213649[R].Cleveland:NASA GRC,2005.
[8] 刘全坤.材料成形基本原理[M].北京:机械工业出版社,2005
[9] 蔡大勇,熊良银,孙贵东,刘文昌,姚枚.GH708高温合金热变形行为[J].稀有金属材料与工程,2006(z2):144-147.
[10] 赵美兰,孙文儒,杨树林,祁峰,郭守仁,胡壮麒.GH761变形高温合金的热变形行为[J].金属学报,2009(01):79-83.
[11] M. Oktay Alniak;Fevzi Bedir .Change in grain size and flow strength in P/M Rene 95 under isothermal forging conditions[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2006(1/3):254-263.
[12] A. Thomas;M. El-Wahabi;J.M. Cabrera .High temperature deformation of Inconel 718[J].Journal of Materials Processing Technology,2006(1/3):469-472.
[13] MARTIN U;MIIHLE U;OETTEL H .Microstructure and modelling of the deformation behaviour of superalloys at high temperatures[J].Computational Materials Science,1997,9:92-98.
[14] H.J. McQueen .Development of dynamic recrystallization theory[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):203-208.
[15] SEMIATIN S L;JONAS J J.Formability and workability of metals:plastic instability and flow localization[M].Ohio:American Society for Metals,Metals Park,1984
[16] 许勇顺,柳建韬,聂明,李自刚,阮雪榆.金属热变形应力-应变曲线数学模型的研究与应用[J].应用科学学报,1997(04):379-384.
[17] DEBORAH A D .Recovery and Recrystallization in Nickel-based Superalloys[D].Virginia:University of Virginia,2002.
[18] AKBEN M G;JONAS J J .Effects of vanadium and molybdenum addition on high temperature recovery recrystallization and precipitation behavior of Niobium-Based microalloys steels[J].Acta Materialia,1983,31(01):161-167.
[19] GAROFALO F .An empiral relation defining the stress dependence of minimum creep rate in metal[J].Transactions AIME,1963,227:3351-3356.
[20] SELLARS C M;MCTEGART W J .On the mechanism of hot deformation[J].Acta Metallurgica,1966,14(09):1136-1138.
[21] SAKAI T;JONAS J J .Dynamic recrystallization:mechanical and microstructural considerations[J].Acta Materialia,1984,32(02):189-209.
[22] McQueen HJ.;Ryan ND. .Constitutive analysis in hot working[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1-2 Special Issue SI):43-63.
[23] Z. J. Gronostajski .Model describing the characteristic values of flow stress and strain of brass M63 and aluminium bronze BA93[J].Journal of Materials Processing Technology,1998(1/3):84-89.
[24] C. A. C. Imbert;H. J. McQueen .Peak strength, strain hardening and dynamic restoration of A2 and M2 tool steels in hot deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(1/2):88-103.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%