欢迎登录材料期刊网

材料期刊网

高级检索

综述耐高温热固性聚酰亚胺树脂及复合材料的研究进展.经过近四十年的发展,形成了多种封端剂封端的热固性聚酰亚胺树脂,其中主要是降冰片烯和4-苯乙炔基苯酐封端聚酰亚胺,长期使用温度涵盖280 ~ 450℃的聚酰亚胺树脂及其复合材料体系.低成本、高韧性和有机无机杂化聚酰亚胺树脂基复合材料将是聚酰亚胺复合材料发展的主要方向.

参考文献

[1] 陈祥宝.高性能树脂基体[M].北京:化学工业出版社,1999
[2] LUBOWITZ H R .Polyimide polymers[P].US Patent 3528950,1970.
[3] DOUGLAS W .PMR-I 5 processing,properties and problems:A review[J].British Polymer Journal,1988,20:405-416.
[4] SERAFINI T T;DELVIGS P;LIGHTSEY G R .Thermally stable polyimides from solutions of monomeric reactants[J].Journal of Applied Polymer Science,1972,16:905-915.
[5] VANNUCCI R D .PMR Polyimides Modifications for Improved Prepreg Tack NASA TM 82951[R].,1982.
[6] KRANBUEHL1 D;EICHINGER D;RICE D.In-Situ Measurement,Modeling and Control of the Imidization Reaction in PMR-15[A].Long Beach,CA,1990:123-131.
[7] HAY J N;BOYLE J D;PARKER S F et al.Polymerization of N-phenylandimide:a model for the crosslinking of PMR-15 polyimides[J].Polymer,1989,30:1032-1040.
[8] STENZENBERGER H D .The preparation and properties of high performance polyimide composites[J].Applied Polymer Symposium,1973,22:77-88.
[9] SERAFINI T T;DELVIGS P .PMR polyimides-review and update NASATM 82821[R].,1982.
[10] ABADIE M J M;VOYTEKUNAS V Y;RUSAOV A L .State of the art organic matrices for high performance composites:A review[J].Iranian Polymer Journal,2006,15(01):65-77.
[11] VANNUCCI R D;CHRISZT J K .Low cost non-MDA polyimides for high temperature applications[J].Materials Challenge:Diversification and the Future,1995,40:277-287.
[12] PEAKE S;PRATTE;BOYCE R.A tough processable non-MDA polyimide[A].Long Beach,CA,1999:96-102.
[13] 陈祥宝;傅英;沈超 等.LP-15聚酰亚胺复合材料研究[J].复合材料学报,1998,15(01):7-13.
[14] 杨士勇,高生强,胡爱军,李家泽,许英利.耐高温聚酰亚胺树脂及其复合材料的研究进展[J].宇航材料工艺,2000(01):1-6.
[15] VANNUCCI R D;CIFANI D.700 F(371℃) Properties of Autoclave Cured PMR-Ⅱ Composites[A].Long Beach,CA,1988:562-575.
[16] CAVANO P J .Second Generation PMR Polyimide/Fiber Composites NASA-CR-159666[R].,1979.
[17] SCOLA D A;WAI M .The thermo-oxidative stability of fluorinated polyimides and polyimides/graphite composites at 371 ℃[J].Journal of Applied Polymer Science,1994,52:421-429.
[18] BOWMAN C L;SUTTER J K;THESKEN J C.Characterization of graphite fiber/polyimide composites for RLV applications[A].Long Beach,CA,2001:1515-1529.
[19] Ronald E.Allred;Sheldon P.Wesson;E.Eugene Shin;Linda Inghram;Linda Mccorkle;Demetrios Papadopoulos;Donald Wheeler;James K.Sutter .The Influence of Sizings on the Durability of High-Temperature Polymer Composites[J].High performance polymers,2003(4):395-419.
[20] LEE C .Study of Processing Chemistry and Stability of High Temperature Polyimides Using TG/FTIR/MS ADA371601[R].,1999.
[21] Kathy C. Chuang;Kenneth J. Bowles;Demetrious S. Papadopoulos .A High T_g PMR Polyimide Composites (DMBZ-15)[J].Journal of advanced materials,2001(4):33-38.
[22] TAKEKOSHI T;TERRY J M .High-temperature thermoset polyimides containing disubstituted acetylene end groups[J].Polymer,1994,35(22):4874-4880.
[23] 刘燕峰 .基于异构联苯二酐的聚酰亚胺基体树脂及纤维增强复合材料[D].中国科学院长春应用化学研究所,2008.
[24] YOKOTA R.Recent trends and space applications of polyimides[J].Journal of Photopolymer Science and Technology,1999(12):209-216.
[25] HERGENROTHER P M;SMITH Jr J G .Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides[J].Polymer,1994,35(22):4857.
[26] SMITH Jr J G;CONNELL J W;HERGENROTHER P M.High Temperature Transfer Molding Resins Based on 2,3,3',4'-Biphenyltetracarboxylic Dianhydride[A].Long Beach,CA,2002:316-328.
[27] John W.Connell;Joseph G.Smith Jr;Paul M.Hergenrother;Jim M.Criss .High Temperature Transfer Molding Resins:Laminate Properties of PETI-298 and PETI-330[J].High performance polymers,2003(4):375-394.
[28] Smith JG.;Connell JW.;Hergenrother PM.;Ford LA.;Criss JM. .Transfer molding imide resins based on 2,3,3 ',4 '-biphenyltetracarboxylic dianhydride[J].Macromolecular symposia,2003(0):401-418.
[29] THOMPSON C M;CONNELL J W;HERGENROTHER P M et al.Adhesive and Composite Properties of a New Phenylethynyl Terminated Imide NASA:20030013638[R].,2002.
[30] CONNELL J W;HERGENROTHER P M;CRISS J M.High Temperature Transfer Molding Resins:Composite Properties of PETI-330[A].Long Beach,CA,2003:1076-1701.
[31] CANO R J;GHOSE S;WATSON K A.Processing and Properties of Vacuum Assisted Resin Transfer Molded Phenylethynyl Terminated Imide Composites[A].California:Long Beach,2012
[32] CONNELL J W;SMITH J G;HERGENROTHER P M.High Temperature Transfer Molding Resin:Preliminary Composite Properties of PETI-375[A].California:Long Beach,2004:16-20.
[33] CONNELL J W;SMITH Jr J G;HERGENROTHER PM.High Temperature Transfer Molding Resins:Preliminary.Composite Properties of PETI-375[A].California:Long Beach,2004:49.
[34] CHEN C;YOKOTA R;HASEGAWAAWA M et al.Someric biphenyl polyimides l:Chemical structure-property relationships[J].High Performance Polymers,2005,17:317-333.
[35] KOCHI M;CHEN C;YOKOTA R et al.Isomeric biphenyl polyimides Ⅱ:Glass transitions and secondary relaxation processes[J].High Perform Poly,2005,17:335-347.
[36] Masatoshi Hasegawa;Zemin Shi;Rikio Yokata;Feifeng He;Hideo Ozawa .Thermo-processable polyimides with high T_g and high thermo-oxidative stability as derived from 2,3,3',4'-biphenyltetracarboxylic dianhydride[J].High performance polymers,2001(4):355-364.
[37] Hergenrother PM.;Smith JG.;Connell JW. .Phenylethynyl containing imide oligomers[J].Polymer: The International Journal for the Science and Technology of Polymers,2000(13):5073-5081.
[38] MEYER G W;JAYRAMAN S;McGRATH J E .Synthesis and characterization of soluble,high temperature 3-phenylethynyl aniline functionalized polyimides via the ester-acid route[J].Polymeric Preprints,1993,34(02):540-541.
[39] CHANUANG K C;BOWMAN C L;TSOTSIS T K et al.6F-Polyimides with phenylethynyl endcap for 315-370 ℃ applications[J].High Performance Polymers,15(04):459-472.
[40] BHARGAVA P .High Temperature Properties of HFPE-Ⅱ-52 Polyimide Resin and Composites[D].New York:Cornell University,2007.
[41] MORGAN R J .Characterization of Structure-ProcessingPerformance Relations of Phenylethynyl Phthalic Anhydride Crosslinked Fluorinated Polyimide(AFR-PE-N) and Their Carbon Fiber Composites ADA468808[R].,2007.
[42] ADAMCZAK A D;SPRIGGS A A;FITCH D M et al.Blistering in carbon fiber filled fluorinated polyimide composites[J].Polymer Composites,2011,32(02):185-192.
[43] LINCOLN J E .Structure-property-processing Relationships and the Effects of Physical Structure on the Hygrothermal Durability and Mechanical Response of Polyimides[D].University of Michigan,2001.
[44] AFRPE-4 prepreg Datasheet[OL].http://www.p2si.com/prepregs/datasheets/AFRPE-4-Datasheet
[45] Grenier-Loustalot MF.;Billon L. .Chemical structure mechanical properties of para-aminostyrene (PAS)-terminated telechelic polyimides[J].Polymer: The International Journal for the Science and Technology of Polymers,1998(10):1815-1831.
[46] FLORENCE M;LOUSTALOT G .New thermostable synthesis:Structure property relationships of nadic terminated telechelic fluorine polyimides[J].Polymer International,1996,41:135-149.
[47] LI Y T;TSCHENL F;LINCOLN J E.TructureProperty Relations of Siloxane Modified Polyimide Composites[A].Dallas,Texas,2006
[48] Parakalan Krishnamachari;Jianzhong Lou;Jag Sankar;Jason E. Lincoln;Sara Hout .Characterization of Fourth-Generation High-Temperature Discontinuous Fiber Molding Compounds[J].International Journal of Polymer Analysis and Characterization,2009(7/8):588-599.
[49] Lincoln JE;Morgan RJ;Curliss DB .Effect of matrix chemical structure on the thermo-oxidative stability of addition cure poly(imide siloxane) composites[J].Polymer Composites,2008(6):585-596.
[50] Lincoln JE;Hout S;Flaherty K;Curliss DB;Morgan RJ .High temperature organic/inorganic addition cure polyimide composites, part 1: Matrix thermal properties[J].Journal of Applied Polymer Science,2008(6):3557-3567.
[51] LEE A .Durability Characterization of POSS-based Polyimides and Carbon-Fiber Composites for Air Force Related Applications ADA482151[R].,2007.
[52] P2SI-900HT-Datasheet[OL].http://www.p2si.com/prepregs/datasheets/P2SI-900HT-Datasheet
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%