欢迎登录材料期刊网

材料期刊网

高级检索

介绍了高分子材料阻尼机理的研究情况;评述了宽温宽频聚丙烯酸酯复合阻尼材料的制备方法对聚丙烯酸酯复合材料的结构与阻尼性能的影响,并对聚丙烯酸酯复合阻尼材料的最新研究进展做了介绍.

参考文献

[1] 邱庆文;李树才 .互穿聚合物网络阻尼材料[J].合成树脂及塑料,1999,16(05):52-54.
[2] 王作龄 .丙烯酸酯橡胶及其配方技术[J].世界橡胶工业,1999,26(05):50-60.
[3] 何曼君;陈维孝;董西狭.高分子物理[M].上海:复旦大学出版社,1990
[4] 万勇军;谢美丽;顾宜 .高分子阻尼材料进展[J].材料导报,1998,12(02):43-47.
[5] T. Pritz .LOSS FACTOR PEAK OF VISCOELASTIC MATERIALS: MAGNITUDE TO WIDTH RELATIONS[J].Journal of Sound and Vibration,2001(2):265-280.
[6] Payne A R;Scott J R.Engineering design with rubber[M].London: Maclaren,1960:34-40.
[7] Hartmann B;Duffy J V;Lee G F;Balizer E .Thermal and dynamic mechanical properties of polyurethaneuresa[J].Journal of Applied Polymer Science,1988,35(07):1829-1852.
[8] Duffy J V;Lee G F;Lee J D;Hartmann B.Dynamic mechanical properties of poly ( tetramethylene ether ) glycol polyurethanes[A].ACS Symposium Series 424,1990:218-300.
[9] Pritz T. .ANALYSIS OF FOUR-PARAMETER FRACTIONAL DERIVATIVE MODEL OF REAL SOLID MATERIALS[J].Journal of Sound and Vibration,1996(1):103-115.
[10] Rogers L .Operators and fractional derivatives for viscoelastic constitutive equations[J].Journal of Rheumatology,1983,27(04):351-372.
[11] Bagley R L;Torvik P J .On fractional calculus model of viscoelastic behaviour[J].Journal of Rbeology,1986,30(01):133-135.
[12] Chang M C;Thomas D A;Sperling .Characterization of the area cinder loss modulus and Tunδ-temperature lurves: acrylic polymers and their sequential interpentrating polymer networks[J].Journal of Applied Polymer Science,1987,34(01):409-422.
[13] Hourston D J .Latex inter penetrating polymer networks based on acrylic polymers Ⅰ. predicted and observed compatibilites[J].Journal of Applied Polymer Science,1984,29(10):2969-2970.
[14] Chang M C O;Thomas D A;Sperling L H .Group contribution analysis of the damping behavior of homopolymers,statistical copolymers,and interpenetrating polymer networks based on acrylic,vinyl,and styrene mers[J].Journal of Polymer Science Part B:Polymer Physics,1988,26(08):1627-1640.
[15] Fay J;Thomas D A;Sperling L H .Evaluation of the area under linear loss modulu-temperature curves[J].Journal of Applied Polymer Science,1991,43(09):1617-1623.
[16] Chang M C O;Thomas D A;Sperling L H .Group contribution analysis of the damping behavior of homopolymers,statistical copolymers,and interpenetrating polymer networks[J].Polymeric Preprints(American Chemical Society Division of Polymer Chemistry),1987,28(02):171-172.
[17] 苗传威,夏宇正,石淑先,焦书科.乳液共混法制备丙烯酸酯系阻尼材料[J].北京化工大学学报(自然科学版),2002(05):42-44,48.
[18] Suresh K I;Bhamidiplli S .Effect of coolymer composition onthe dynamic mechanical and thermal behaviour of butyl acrylateacrylonitrile copolymers[J].Macromolecular Materials and Engineering,2003,288:980-988.
[19] Chu Houhsein;Lee Chiming;Guang W G .Damping of vinyl acetate-n-butyl acylate copolymers[J].Journal of Applied Polymer Science,2004,91(03):1396-1403.
[20] Huang Guangsu;Jiang Luxia;LI Qiang .Molecular design of damping nubber based on polyacrylate-containing silicone[J].Journal of Applied Polymer Science,2002,85(04):746-751.
[21] 曼森J·A;斯柏林L H.聚合物共混物及复合材料[M].北京:化学工业出版社,1976
[22] Nagarajan P.;Trivedi MK.;Mital CK. .LATEX INTERPENETRATING POLYMER NETWORKS BASED ON POLYACRYLATES AND POLYSTYRENE .2. EFFECT OF METHACRYLIC ACID CONCENTRATION IN THE SEED[J].Journal of Applied Polymer Science,1996(2):197-202.
[23] Yeo J K;Sperling L H;Thomas D A .The cretical prediction of domain size in IPN's and related materials[J].Polymer,1983,24(05):307-313.
[24] 李强,黄光速,江璐霞.PMPS/PMAc相容性与同步互贯聚合物网络的阻尼性能研究[J].高分子学报,2003(03):409-413.
[25] 成国祥,沈锋,卢涛,万怡灶,孙清池,刘静,姚康德.锆钛酸铅/高分子复合膜的吸声特性[J].高分子材料科学与工程,1999(03):133-135.
[26] Hajime Kaneko;Kiyohiro Inoue;Yoichi Tominaga .Damping performance of polymer blend/organic filler hybrid materials with selective compatibility[J].Materials Letters,2002(1/2):96-99.
[27] WU Chifei .Effects of a hindered phenol compound on the dynamic mechanical properties d chlorinated polyethylene, acrylic rubber, and their blend[J].Journal of Applied Polymer Science,2001,80(13):2468-2473.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%