采用电沉积方法制备了平均晶粒尺寸为45 nm的ZrO2/Ni纳米复合材料,并通过拉伸试验对该材料的超塑性能进行了研究.结果表明:ZrO2/Ni纳米复合材料具有低温高应变速率超塑性,在温度为450℃、应变速率为1.67×10-3/s时,获得的最大伸长率为605%.采用SEM和TEM分析了沉积态材料及变形后的组织,并对变形机理进行了探讨.ZrO2/Ni纳米复合材料的超塑变形机制主要是晶界滑移,S元素的析出在一定程度上协调了变形.
参考文献
[1] | 崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002(06):3-6. |
[2] | Kim W J .Size effect of SiC particulates on activation energy for superplastieity flow in a 2124 metal matrix composite[J].Seripta Materialia,1999,41(10):1131. |
[3] | H.Watanabe;T.Mukai .Low temperature superplasticity in a magnesium-based composite[J].Scripta materialia,2000(3):249-255. |
[4] | DING Shui,ZHANG Kaifeng,WANG Changli.Pulse Electrodeposition and Nanoindentation Test of ZrO2/Ni Nanocomposite[J].武汉理工大学学报(材料科学版)(英文版),2007(03):462-465. |
[5] | Mara N A;Sergueeva A V;Mara T D et al.Superplasticity and cooperative grain boundary sliding in nanocrystalline Ni3Al[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2007,463(1 -2):242. |
[6] | Fereshteh Ebrahimi;Hongqi Li .Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys[J].Scripta materialia,2006(3):263-266. |
[7] | Wilkinson D S.Mass transport in solids and fluids[M].Cambridge:Cambridge University Press,2000:242. |
[8] | McFadden S X;Valiev R Z;Mukherjee A K .Superplasdeity in nanocrystalline Ni3Al[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2001,319-21:852. |
[9] | Wang Y M;Cheng S;Wei Q M .Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni[J].Seripta Materialia,2004,51:1025. |
[10] | McFadden S X;Mukherjee A K .Sulfur and superplasticity in electrodeposited ultrafine-grained Ni[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2005,395(1 - 2):266. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%