欢迎登录材料期刊网

材料期刊网

高级检索

不同于传统铝合金焊接装配贮箱设计,复合材料贮箱设计重点是在分析其全寿命周期载荷工况下复合材料基体微裂纹萌生和损伤扩展的基础上,通过有效的设计手段防止其所盛装的低温推进剂(LOx、LH2)泄漏.本文分别对低温用树脂基复合材料及其性能、复合材料贮箱设计准则、贮箱主要部段的结构设计等方面进行了综述,并对复合材料贮箱发展前景进行了展望.

参考文献

[1] Yasuhide Shindo,Fumio Narita,Susumu Takaheshi,et al .Analysis of mixed-mode interlaminar fracture and damage behavior of GFRP woven laminates at cryogenic temperatures[J].Cryogenics,2009,49
[2] 曾庆敦,邹波.单向复合材料在低温下的应力集中及强度[J].航空材料学报,2005(01):58-62.
[3] 张建可.碳纤维复合材料低温热导率的实用计算方法[J].中国空间科学技术,1994(6):39-42,1994.
[4] 赵福祥,魏蔚,刘康,汪荣顺.纤维复合材料在低温容器内支撑结构中的应用[J].低温工程,2005(03):23-26,34.
[5] 刘康,汪荣顺,石玉美,顾安忠.纤维增强聚合物基复合材料的低温性能[J].低温工程,2006(05):35-44.
[6] Reed R P,Walsh R P .Tensile properties of resins at low temperatures[J].Advances in Cryogenics Engeering,1994,40
[7] Reed R P,Golda M .Cryogenic properties of unidirectional composites[J].Cryogenics,1994,34(11):909,1994.
[8] Reed R P,Golda M .Cryogenic composite supports:a review of strap and strut properties[J].Cryogenics,1997,37
[9] 付绍云,杨庆生,陈振坤,杨娇萍.多壁纳米碳管增强环氧树脂基复合材料的低温力学性能研究[C].中国力学学会2009学术大会论文集,2009:1-4.
[10] 高阳,汤炜,王立峰,赵云峰.适于低温应用的玻璃纤维/聚醚酰亚胺复合材料[J].宇航材料工艺,2009(06):42-44,47.
[11] 马宗哲,类日升.复合材料的低温性能[J].真空与低温,1985(2):22-29,1985.
[12] 裘镜蓉.低温用复合材料[J].宇航材料工艺,1983(2):55-58,1983.
[13] 赵立中,刘会新,马福柱,等.玻璃钢/复合材料的低温力学性能研究[J].玻璃钢/复合材料,1985(4):34-38,1985.
[14] Mallick K,Cronin J,Ryan K,et al.An integrated systematic approach to linerless composite tank development[C].AIAA paper 2005-2089,46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Materials Conference,Austin,Texas,April 18-21,2005,2005.
[15] Nalm J A.Matrix microcracking in composites[M].Talreja R,Manson J A,eds.Polymer Matrix Composites,Elsevier Science,Chapter 13,2001,2001.
[16] Mallick K,Cronin J,Arzberger S,et al.Ultralight linerless composite tanks for in-space applications[C].Presented at the MAA Space 2004 Conference,San Diego,Sept.27-30,2004,2004.
[17] McCartney L N,Schoeppner G A .Predicting theeffect of non-uniform ply cracking on the thermoelastic properties of cross-ply Laminates[J].Composites Science and Technology,2002,62(14):1841-1856,2002.
[18] Silberschmidt V V .Matrix cracking in cross-ply laminates:effect of randomness[J].Composites Part A:Applied Science and Manufacturing,2005,36(2):129-135,2005.
[19] Bapanapalli S K,Sankar B V,et al .Microcracking in cross-ply laminates due to biaxial mechanical and thermal loading[J].AIAA Journal,2006,44(12):2949-2957,2006.
[20] Zhang D X,Ye J Q,Lam D .Ply cracking and stiffness degradation in cross-ply laminates under biaxial extension,bending and thermal loading[J].Composite Structures,2006,75
[21] Bechel V.Through-laminate damage in cryogenically cycled polymer composites[C].AIAA-2004-1771,45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,Palm Springs,California,Apr.19-22,2004,2004.
[22] Bechel V.Permeability and damage in unloaded cryogenically cycled PMCs[C].AIAA-2005-2156,47th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,Austin,Texas,April 18-21,2005,2005.
[23] Bechel V,Negilski M,James J .Limiting the permeability of composites for cryogenic application[J].Composites Science and Technology,2006,66
[24] Gates T S,Grenoble R W,Whitley K S.Permeability and life-time durability of polymer matrix composites for cryogenic fuel tanks[C].AIAA 2004-1859,45th AIAA/ASME/ASCE/AHS/ASC SDM Conference,Palm Spring,CA,2004,2004.
[25] Roy S,Utturkar A,Nair A.Modeling and character-ization of permeability and damage of graphite/epoxy at cryogenictemperature[C].AIAA 2005-2088,46th AIAA/ASME/ASCE/AHS/ASC SDM conference,Austin,TX,2005,2005.
[26] Ryan K,Cronin J,Arzberger S,et al.Prediction ofpressure cycle induced microcrack damage in linerless composite tanks[C].47th AIAA/ASME/ASCF/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Newport,Rhode Island,AIAA paper 2006-2201,May 1-4,2006,2006.
[27] Fathollah T B,Mahmood M S,Larry B L .Residual stiffness in cross-ply laminates subjected to cyclic loading[J].Composite Structures,2008,85
[28] Charewicz A,Daniel Ⅰ M.Danage mechanisms and accumulation in graphite/epoxy laminates[S].Hahn H Ted.Compos.Mater.:Fatigue and Fract,ASTM STP 907,1986:274-297,1986.
[29] Shokrieh M M,Lessard L B .Progressive fatigue damage modeling of composite materials:Part 1.Modeling[J].J Compos.Mater.,2000,34(13):1056-80,2000.
[30] Su Xiaofeng,Abdi Frank,et al.A study of ply thickness and angle designs for preventing permeability of the IM7/977-2 polymer composite cryogenic tank[C].47th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Newport,Rhode Island,AIAA,2006-2213,May 1-4,2006,2006.
[31] Zhang J,Fan J,Soutis C .Analysis of multiple matrix cracking in【±θm/90n】s composite laminates-Part 2:development of transverse ply cracks[J].Composites,1992,23(5):299-304,1992.
[32] Tomohiro Y,Takashi Ⅰ,et al .Effects of layup angle and ply thickness on matrix crack interaction in contiguous plies of composite laminates[J].Composites:Part A,2005,36
[33] Tomohiro Y,Takashi Ⅰ,et al .Evaluation of gas leakage through composite laminates with multilayer matrix cracks:Cracking angle effects[J].Composites Science and Technology,2006,66
[34] Roy S,Benjamin M .Modeling of permeation and damage in graphite/epoxy laminates for cryogenic fuel storage[J].Composites Science and Technology,2004,64
[35] Noor A K,Samuel L,Vermeri D B,et al .Structure technology for future aerospace system[J].Computers and Structures,2000,74(5):507-519,2000.
[36] Nagendra S,Haftka R T,Gurdal Z.Design of a blade stiffened composite panel by genetic algorithm[C].34th AIAA/ASME/ASCE,AHS/ASC Structures,Structural Dynamics,and Materials Conference,La Jotta,AIAA-93-1584,1993,1993.
[37] Jaunky N,Knight N F Jr,Ambur D R .Optimal design of general stiffened composite circular cylinders for global buckling with strength constraints[J].Composite Structures,1998,41:243-252,1998.
[38] Ambur D R,Jaunky N .Optimal design of grid-stiffened panels and shells with variable curvature[J].Composite Structures,2001,52(2):173-180,2001.
[39] Sadeghifar M,Bagheri M,Jafari A A .Multiobjective optimization of orthogonally stiffened cylindrical shells for minimum weight and maximum axial buckling load[J].Thin-Walled Structures,2010,48(12):979-988,2010.
[40] Bagheri M,Jafari A A,Sadeghifar M .A genetic algorithm optimization of ring stiffened cylindrical shells for axial and radial buckling loads[J].Archive of Applied Mechanics,2011,81(11):1639-1649,2011.
[41] 张志峰,陈浩然,李煊,蒋元兴.先进复合材料格栅圆柱壳优化设计的混合遗传算法[J].复合材料学报,2005(02):166-171.
[42] 穆雪峰 .多学科设计优化代理模型技术的研究和应用[D].南京航空航天大学,2004.
[43] Rikards R,Abramovich H,AuzinsJ,et al .Surrogate models for optimum design of stiffened composite shells[J].Composite Structures,2004,63(2):243-251,2004.
[44] 李烁,徐元铭,张俊.复合材料加筋结构的神经网络响应面优化设计[J].机械工程学报,2006(11):115-119.
[45] 荣晓敏,徐元铭,吴德财.复合材料格栅结构优化设计中的计算智能技术[J].北京航空航天大学学报,2006(08):926-929.
[46] 周思达,刘莉,朱华光.网格整体加筋贮箱圆筒壳结构优化设计[J].南京航空航天大学学报,2010(03):363-368.
[47] Lanzi L,Giavono V .Post-buckling optimization of composite stiffened panels:Computations and experiments[J].Composite Structures,2006,73(2):208-220,2006.
[48] 张柱国,姚卫星,刘克龙.基于进化Kriging模型的金属加筋板结构布局优化方法[J].南京航空航天大学学报,2008(04):497-500.
[49] Wu Hao,Yan Ying,Yan Wei,Liao Baohua.Adaptive Approximation-based Optimization of Composite Advanced Grid-stiffened Cylinder[J].中国航空学报(英文版),2010(04):423-429.
[50] Venkataraman S.Modeling,analysis and optimization of cylindrical stiffened panels for reusable launch vehicle structures[D].Gainesville:University of Florida,1999,1999.
[51] Lamberti L,Venkataraman S,Haflka R T,et al .Preliminary design optimization of stiffened panels using approximate analysis models[J].International Journal for Numerical Methods in Engineering,2003,57(10):1351-1380,2003.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%