欢迎登录材料期刊网

材料期刊网

高级检索

采用光致发光方法研究了采用金属有机化学气相沉积(MOCVD)在蓝宝石衬底上生长的掺硅InGaN和掺硅GaN材料的光学性质.在室温下,InGaN材料带边峰位置为437.0 nm,半高宽为14.3 nm;GaN材料带边峰位置为363.4 nm,半高宽为9.5 nm.进行变温测量发现,随温度的升高,两种材料的发光强度降低,半高宽增大;GaN材料的带边峰值能量位置出现红移现象,与Varshini公式符合较好;InGaN材料的带边峰值能量位置则出现红移-蓝移-红移现象,这与InGaN材料的局域态、热效应以及由于电子-空穴对的形成而造成的无序程度增加有关,对大于140 K的峰值能量位置的红移用Varshini公式拟合,符合较好.

参考文献

[1] Nakamura S, Senoh M, Nagahama S, et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate[J]. Appl. Phys. Lett. , 1998, 72(2):211-213.
[2] 秦志新,陈志忠,于彤军,等.氧化对GaN基LED透明电极接触特性的影响[J].液晶与显示,2004,19(1):1-4.
[3] 陈志忠,秦志新,胡晓东,等.大功率白光LED的制备和表征[J].液晶与显示,2004,19(2):83-86.
[4] 刘宝林.利用三步法MOCVD生长器件质量的GaN[J].半导体光电,2001,22(6):428-432.
[5] Keller S, Keller B P, Wu Y F, et al. Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition[J]. Appl. Phys. Lett., 1996, 68(11):1525-1527.
[6] Ogino T, Akoi M. Mechanism of yellow luminescence in GaN[J]. Jpn. J. Appl. Phys. , 1980,19(12) :2395-2405.
[7] Ponce F A, Bour D P, GOtz W, et al. Spatial distribution of the luminescence in GaN thin films[J]. Appl. Phys. Lett., 1996, 68(1):57-59.
[8] Cho Y H, Gainer G H, Fischer A J, et al. "S-shaped"temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells[J]. Appl. Phys. Lett. , 1998, 73(10):1370-1372.
[9] Baranovshii S D, Eichmann R, Thomas P. Temperature-dependent exaction luminescence in quantum wells by computer simulation [J]. Phys. Rev. B, 1998,58(19) :13081-13087.
[10] Varshini Y P. Temperature dependence of the energy gap in semiconductors [J]. Physica, 1967, 34:149-154.
[11] Shan W, Little B D, Song J J. Optical transitions in InGaN alloys grown by metal organic chemical vapor deposition[J]. Appl.Phys. Lett., 1996, 69(22):3315-3317.
[12] 樊志军,刘祥林,万寿科,等.InGaN光致发光性质与温度的关系[J].半导体学报,2001,22(5):569-572.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%