欢迎登录材料期刊网

材料期刊网

高级检索

场发射显示器 (FED)是一种新发展起来的平板显示器,它在亮度、视角、响应时间、工作温度范围、能耗等方面具有优良的特性.文章首先简要地介绍了FED发展历史和现状、工作原理以及对荧光粉的要求,然后介绍了FED荧光粉的研究历史和发展现状以及有关FED荧光粉激发和发光机理的相关研究工作,最后就FED荧光粉的研究提出了一些建议.

参考文献

[1] Shoulders K R. Microelectronics using electron beam activated machining techniques [J]. Adv.Comput.,1961, 2:135-138.
[2] Spindt C A. A thin film field emission cathode [J]. J.Appl.Phys.,1968,39:3504-3505.
[3] Ghis A, Meyer R, Rambaud P, et al.Sealed vaccum devices:fluorescent microtip displays [J]. IEEE. Trans. Electron., 1993, 38:2320-2322.
[4] Bechtel H, Nikol H. Phosphor performance in low voltage displays [A]. Proceeding 6th International Conference on Luminescent Materials at the Joint Meeting of the Electrochemical-Society/International-Society-for-Electrochemistry[C]. Penning, USA:Electrochemical Society Inc, 1998.256-270.
[5] Babu R C, Ya W, Bruce E, et al.FED up with FAT tubes [J]. IEEE. Spectrum, 1998,35(4):42-51.
[6] Sashiro U, Junko Y, Takeshi N, et al.Large-area FEDs with carbon-nanotube field emitter [J]. Journal of the SID, 2003,11(1):145-150.
[7] 李晓华, 童林夙, 杨小伟,等. 平板显示器的参数测量及标准[J]. 液晶与显示, 2003, 18(6):432-436.
[8] Talin A A, Dean K A, Jaskie J E. Field emission displays:a critical review [J]. Solid-State Electronics, 2001, (45):963-976.
[9] Katherine D. Beyond AMLCDs:Field emission displays? [J]. Solid State Technology,1994, 11:55-65.
[10] 朱长纯,史永胜. 场致发射显示器的现状与发展[J]. 真空电子技术,2002, (5):15-17.
[11] Holloway P H, Trottier T A, Abrams B, et al. Advances in field emission displays phosphors [J]. J. Vac. Sci. Technol. B,1999,17(2):758-764.
[12] Lauren E S. Low-voltage Cathodoluminescent Phosphors:A 20-year chronology of low-voltage cathodoluminescence efficiency [Z]. Electrochemical Society Interface,1998.24-37.
[13] 中国科学院吉林物理所<固体发光>编写组. 固体发光[M]. 合肥:中国科技大学,1976.72-84.
[14] Charles F. Range of 1~10 keV electrons in solids [J]. Phys. Rev.,1960, 117(2):455-459.
[15] Shigeo Shionoya, William M Y. Phosphor Handbook[M].New York:CRC Press,1999.116.
[16] Wagner B K, Penczek J, Yang S, et al. Recent developments in low voltage FED phosphors [J]. Georgia Tech. Research Institute, 1998, 1(2):112-115.
[17] Stoffers C, Yang S, Zhang F, et al. Activator recycling in low voltage cathodoluminescent phosphors [J]. Appl. Phys. Lett., 1997, 71(13):1759-1763.
[18] Jacobsen S. Phosphors for full-color low-voltage field-emission displays [J]. J. Soc. Inf. Disp., 1996, 4(4):331-335.
[19] Stoffers C, Yang S, Jacobsen S M, et al. Saturation of phosphors under low-voltage excitation [J]. J.Soc. Inf. Disp.,1996, 4(4):337-341.
[20] Ozawa L. Cathodoluminescence [M]. New York:VCH Publishers, 1990.225-227.
[21] Jean-Charles S, Yong-Dong J, John P, et al. Cathodoluminescent properties of coated SrGa2S4:Eu2+ and ZnS:Ag,Cl phosphors for field emission display applications [J]. Mater. Sci. & Eng., 2000, B76:165-168.
[22] Kominami H, Nakamura T, Sowa T K, et al. Low voltage cathodoluminescent properties of phosphors coated with In2O3 by sol-gel method [J]. Appl.Surf.Sci.,1997,113/114:521-522.
[23] Swart H C, Sebastian J S, Trottier T A, et al. Degradation of zinc sulfide phosphors under electron bombardment [J]. J. Vac. Sci. Technol., 1996,A14(3):1697-1703.
[24] Thomes W J, Seager C H, Holloway P H. Reduction of intensity from coatings on cathodoluminescent phosphors:MgO or Al2O3 on Y2O3:Eu or Y2SiO5:Tb [J]. J. Appl. Phys.,2002, 91(12):9657-9662.
[25] Ozawa L, Hersh H N. Random-walk model of energy transfer in cathodoluminescence [J]. Phys. Rev. Lett.,1976,36:683-688.
[26] Ohno K, Abe T. The synthesis and particle growth mechanism of bright green phosphor YAG:Tb [J]. J.Electronchem Soc., 1994,141(5):1252-1254.
[27] Yoo J S, Lee J D. The effects of particle size and surface recombination rate on the brightness of low-voltage phosphor [J]. J. Appl. Phys.,1997, 81(6):2810-2813.
[28] Welker T, Hintzen H T. Grain size effect on the cathode-ray efficiency of Y2O3:Eu [A]. Extended Abstracts-Electrochemical Society Fall Meeting′91[C]. USA:The Electrochemical Society, Inc, 1991.973-974.
[29] Shea L E, McKittrick J. Predicting and modeling the low-voltage cathodoluminescent efficiency of oxide phosphors [J]. J.Electrochem Soc.,1998,145(9):3165-3170.
[30] Okumura M, Tamatani M, Matsuda N, et al. Dependence of luminence efficiency on phosphor particle size [A]. SID Japan Chapter IDW′97, Proceedings of the 4th International Display Workshops[C].Nagoya, Japan:Institute of Image Information and Television Engineers,1997. 629-632.
[31] Leverenz H W. An Introduction to Luminescence of Solid[M]. New York:John Wiley, 1950.201-227.
[32] Vanheusden K, Seager C H, Warren W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors [J]. Appl. Phys. Lett.,1996, 68:403-405.
[33] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green phospholuminescence in ZnO phosphor powders [J]. J.Appl.Phys.,1996,79:7983-7990.
[34] Kingsley J D, Prener J S. Voltage dependence of cathode-ray efficiency phosphors:phosphor particles with no luminescent coatings [J]. J.Appl.Phys.,1972,43:3073-3079.
[35] Sebastian J S, Swart H C, Trottier T A, et al. Degradation of ZnS field-emission display phosphors during electron-beam bombardment [J]. J.Vac.Sci.Technol.,1997, A15(4):2349-2353.
[36] Swart H C, Trottier T A, Sebastian J S, et al. The influence of residual gas pressures on the degradation of ZnS powder phosphors [J]. J.Appl.Phys.,1998,83:4578-4583.
[37] Justel T, Bechtel H, Nikol H, et al. Improved VUV phosphors for plasma display panels [A]. Proceedings of the Seventh International Symposuium on Physics and Chemistry of Luminescent Materials[C]. Pennington, USA:Electrochemical Society Inc, 1999.103-119.
[38] Shea L E. Materials Science Program[D]. San Diego, USA:University of California,1997.
[39] Mays R. Measured data[Z]. Sandia, USA:Sandia National Laboratories, 1997.
[40] 李文连. 显示技术用稀土有机和稀土无机荧光体研究新进展[J]. 液晶与显示, 2002,17(5):335-340.
[41] Paul H H, Trottier T A, Sebastian J, et al. Degradation of field emission display phosphors [J]. J.Appl.Phys.,2000,88(1):483-488.
[42] Fitz-Gerald J M, Trottier T A, Singh R K, et al. Significant reduction of cathodoluminescent degradation in sulfide-based phosphors [J]. Appl.Phys.Lett.,1998,72(15):483-488.
[43] Oosthuizen L, Swart H C, Viljoen P E, et al. ZnS:Cu,Al,Au phosphor degradation under electron excitation [J]. Appl.Surf.Sci.,1997, 120(1-2):9-14.
[44] Shigeo Shionoya, William M Y. Phosphor Handbook[M]. New York:CRC Press,1999.317-330.
[45] Trottier T A, Swart H C, Jones S L, et al. Comparison of the degradation mechanisms in ZnS and Y2O2S:Eu powder FED phosphors [J]. J.Soc.Inf.Disp.,1996,4(4):351-355.
[46] Ravichandran D, Rustum R, Chakhovshoi A G, et al. Fabrication of Y3Al5O12:Eu thin film and powders for field emission display applications[J]. Journal of Luminescence,1997,71:291-297.
[47] 蒋洪川,杨仕清,张文旭,等. 溶胶-凝胶法合成Y3Al5O12:Ce3+,Tb3+稀土荧光粉的研究[J]. 无机材料学报,2001,16(3):720-722.
[48] Jun-ji Z, Jin-wei N, Xue-jian L, et al. Synthesis of ultra fine YAG:Tb phosphor by nitrate-citrate sol-gel combustion process [J]. Materials Research Bulletin,2003,38:1249-1256.
[49] Jing X, Ireland T, Gibbons C, Silver J, et al. Control of Y2O3:Eu spherical particle phosphor size, assembly properties, and performance for FED and HDTV [J]. Journal of the Electrochemical Society, 1999, 146(12):4654-4658.
[50] 王列松, 林君, 周永慧. 喷雾热解法制备YBO3:Eu球形发光粉[J]. 高等学校化学学报, 2004,25(1):11-15.
[51] 周永慧, 林君, 赵增芹,等. 用3种方法合成Y3Al5O12:RE3+(RE=Eu,Dy)发光粉的对比研究[J].中国稀土学报,2001,19(6):575-578.
[52] Mi-Gyeong K, Jung-Chul P, Dong-Kuk K, et al. Low-voltage cathodoluminescence property of Li-doped GdxY2-xO3:Eu3+[J]. Journal of Luminescence,2003,104:215-221.
[53] Shinobu F, Akira S, Toshio K. Ga-doping effects on electrical and luminescent properties of ZnO:(La,Eu) of red phosphors thin films [J]. J.Appl.Phys.,2003, 94(4):2411-2416.
[54] Zhang F-L, Yang S, Stoffers C, et al. Low voltage cathodoluminescence properties of blue emitting SrGa2S4:Ce3+ and ZnS:Ag,Cl phosphors [J]. Appl. Phys. Lett., 1998,72:2226-2228.
[55] Tanaka K, Okamoto S, Kominami H, et al. Cathodoluminescence properties of blue-emitting SrGa2S4:Ce thin-films grown by low-temperature process[J]. J.Appl.Phys.,2002,92(2):834-837.
[56] Rag D Y. Cathodoluminescence properties of SrY2S4:Eu phosphor for application in field emission display [J]. Journal of the Electrochemical Society,2000,147(4):1597-1600.
[57] Yang S, Stoffers C, Zhang F, et al. Green phosphor for low-voltage cathodoluminescent applications:SrGa2S4:Eu2+[J]. Appl. Phys. Lett.,1998,72:158-160.
[58] Xiping J, Carol G, David N, et al. Bule luminescence in yttrium and gadolinium niobates caused by bismuth.The importance of non-bonding ns2 valence orbital[J]. Journal of Materials Chemistry, 1999, 9:2913-2918.
[59] Shigeo Shionoya, William M Y. Phosphor Handbook[M]. New York:CRC Press,1999.178-197.
[60] Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting Zinc Oxides[J]. Phys. Rev. Lett.,1969,23(11):579-581.
[61] Garces N Y, Wang L, Bai L. Role of copper in the green luminescence from ZnO crystals [J].Appl.Phys.Lett.,2002,81(4):622-624.
[62] Reynolds D C, Look D C, Jogai B. Fine structure on green band in ZnO[J]. J.Appl.Phys., 2001,89(11):6189-6191.
[63] Miyamoto S,Shionoya S. Luminescence of excitonic molecule in ZnO[A].Proceedings of the 1975 International Conference on Luminescence[C]. Oxford New York:North-Holland Publishing Company, 1976, 563-567.
[64] Simpson J C, Cordaro J F. Defect clusters in Zinc oxide [J]. J.Appl.Phys.,1990,67(11):6760-6763.
[65] Mahan G D. Intrinsic defects in ZnO varistors [J]. J.Appl.Phys.,1983,54(7):3825-3832.
[66] Studenikin S A,Nickolay G, Michael C. Density of band-gap traps in polycrystalline films from photoconductivity transients using an improved Laplace transform method [J]. J.Appl.Phys.,1998,84(4):5001-5004.
[67] Egelhaal H J, Oelkrug D. Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO [J]. J.Cryst.Growth.,1996,161:190-194.
[68] Kohan A F, Ceder G. First-principles study of native point defects in ZnO [J]. Phys.Rev. B, 2000, 61(22):15019-15027.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%