欢迎登录材料期刊网

材料期刊网

高级检索

采用在OLED有机层中夹入与主发光材料不同的发光材料薄层标记发光区域,介绍了复合发光区域位置随电压变化而移动的现象.在以Alq为发光材料的单层器件中夹入0.5 nm厚的红光材料DCJTB层,或在两个位置分别夹入0.5 nm厚的橙光材料QA层和红光材料DCJTB层,研究分析了电压升高时发光颜色的变化.结果表明,复合发光区域位置随电压升高由阳极一侧有机层向阴极方向移动;在有空穴阻挡层BCP层的器件中,在电子传输层与BCP层之间夹入10 nm厚的DCJTB掺杂发光层,研究了不同电压时器件的发光颜色, 发光区域位置在较低的电压范围内被BCP层限定,但发光区域在驱动电压很高时可越过BCP层进入电子传输层.

参考文献

[1] Matsumura Michio, Jinde Yukitoshi. Voltage dependence of light-emitting zone in aluminum hydroxyquinoline layers of organic heterojunction EL devices[J]. IEEE Transactions on Electron Devices, 1997,44(8):1229-1233.
[2] Tang C W, Vanslike S A, Chen CH. Electroluminescence of doped organic thin films[J]. J. Appl. Phys.,1989,65(9):3610-3616.
[3] Yamashita K, Futenma J, Mori T, et al.Effect of location and width of doping region on efficiency in doped OLED[J].Synth. Met., 2000,111:87-90.
[4] Furukawa K,Erasaka Y T,Ueda H, et al. Effect of plasma treatment of ITO on the performance of organic electroluminescent device[J]. Synth. Met., 1997, 91:99-103.
[5] Brutting W, Berleb S, Muckl A G. Device physics of organic light-emitting diodes based on molecular materials[J]. Organic Electronics, 2001,2(1):1-36.
[6] Kepler R G, Beeson P M, Jacobs S J, et al.Electron and hole mobility in tris(8-hydroxyquinolinolato-N1,O8) aluminum[J].Appl. Phys. Lett., 1995, 66(26):3618-3620.
[7] Aziz H, Popvic Z D, Hu N X,et al. Degradation mechanism of small moleculelight-emitting devices[J]. Science,1999, 283:1900-1902.
[8] Rong R H, Tang C W, Marchetti A P. Current-induced fluorescence quenching in OLED[J]. Appl. Phys. Lett., 2002,80(5):874-876.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%