采用在OLED有机层中夹入与主发光材料不同的发光材料薄层标记发光区域,介绍了复合发光区域位置随电压变化而移动的现象.在以Alq为发光材料的单层器件中夹入0.5 nm厚的红光材料DCJTB层,或在两个位置分别夹入0.5 nm厚的橙光材料QA层和红光材料DCJTB层,研究分析了电压升高时发光颜色的变化.结果表明,复合发光区域位置随电压升高由阳极一侧有机层向阴极方向移动;在有空穴阻挡层BCP层的器件中,在电子传输层与BCP层之间夹入10 nm厚的DCJTB掺杂发光层,研究了不同电压时器件的发光颜色, 发光区域位置在较低的电压范围内被BCP层限定,但发光区域在驱动电压很高时可越过BCP层进入电子传输层.
参考文献
[1] | Matsumura Michio, Jinde Yukitoshi. Voltage dependence of light-emitting zone in aluminum hydroxyquinoline layers of organic heterojunction EL devices[J]. IEEE Transactions on Electron Devices, 1997,44(8):1229-1233. |
[2] | Tang C W, Vanslike S A, Chen CH. Electroluminescence of doped organic thin films[J]. J. Appl. Phys.,1989,65(9):3610-3616. |
[3] | Yamashita K, Futenma J, Mori T, et al.Effect of location and width of doping region on efficiency in doped OLED[J].Synth. Met., 2000,111:87-90. |
[4] | Furukawa K,Erasaka Y T,Ueda H, et al. Effect of plasma treatment of ITO on the performance of organic electroluminescent device[J]. Synth. Met., 1997, 91:99-103. |
[5] | Brutting W, Berleb S, Muckl A G. Device physics of organic light-emitting diodes based on molecular materials[J]. Organic Electronics, 2001,2(1):1-36. |
[6] | Kepler R G, Beeson P M, Jacobs S J, et al.Electron and hole mobility in tris(8-hydroxyquinolinolato-N1,O8) aluminum[J].Appl. Phys. Lett., 1995, 66(26):3618-3620. |
[7] | Aziz H, Popvic Z D, Hu N X,et al. Degradation mechanism of small moleculelight-emitting devices[J]. Science,1999, 283:1900-1902. |
[8] | Rong R H, Tang C W, Marchetti A P. Current-induced fluorescence quenching in OLED[J]. Appl. Phys. Lett., 2002,80(5):874-876. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%