采用溶胶-凝胶法和快速热处理工艺,分别以不锈钢(SS)和镍合金(NC)为基片,成功制备了表面均匀、无裂纹的锆钛酸铅(Pb(Zn0.53Ti0.47)O3,简写为PZT)薄膜.为了缓解金属基片与PZT薄膜之间由于晶格常数和热膨胀系数不同所造成的不匹配状态,引入了镍酸镧(LaNiO3,简写为LNO)薄膜作为过渡层.XRD和SEM结果表明,经过600℃下30min的晶化,PZT薄膜已经由无定型转化为钙钛矿相.以LNO为过渡层,在NC金属基片上制备的PZT薄膜具有较高的介电常数和较低的损耗(1kHz下ε=717,tanδ=0.08),较低的漏电流(50kV/cm下J=2.6×10-7A/cm2)以及较好的铁电性能(+Pr=90μC/cm2,-Pr=14 μC/cm2,Ec=32.5kV/cm).同时,在SS基片上,通过引入LNO过渡层,制备的PZT薄膜也具有比较好的性能.
Smooth and crack free lead zirconate titanate (PZT) thin films were successfully deposited on stainless steel (SS) and nickel -chromium (NC) substrates by sol -gel method combined with a rapid thermal annealing process (RTA). An intermediate LaNiO3 layer was deposited between the PZT thin films and metal substrates to buffer the mismatch. X -ray diffraction and scanning electron micro scopy (SEM) reveal that amorphous PZT layers are crystallized into a perovskite phase with dense and smooth surface after annealed at 600℃ for 30min. Excellent properties such as high dielectric constant and low dielectric dissipation (e = 717, tanδ = 0.08, at 1kHz),low leakage current ( J = 2.6×10-7A/cm2, at 50 kV/cm), and typical hysteresis loop ( + Pr = 90μC/cm2, - Pr = 14μC/cm2, Ec =32.5 kV/cm) are obtained on LNO - coated NC substrates and good results are also obtained on LNO coated SS substrates.
参考文献
[1] | Bernstein J.Advanced MEMS feroelectric ultrasound 2 - dimensional array[A].,1999:17-21. |
[2] | Young - Sik Kim et al.PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM[J].Sensors and Actuators A:Physical,2003,103:122. |
[3] | Chen H D;Vdayakumar K R;Cross L E et al.Dielectric,ferroelectric, and piezoelectric properties of lead zirconate titanate thick films on silicon substrates[J].Journal of Applied Physics,1995,77:3349. |
[4] | Impey SA.;Patel A.;Beanland R.;Shorrocks NM.;Watton R. Whatmore RW.;Huang Z. .Microstructural characterization of sol-gel lead-zirconate-titanate thin films[J].Journal of Applied Physics,1998(4):2202-2208. |
[5] | Kyu - Seog Hwang et al.Preparation of epitaxial Pb(Zr, Ti)O3 thin films on MgO(100) substrates by dipping- pyrolysis process[J].Japanese Journal of Applied Physics,1997,36:5221. |
[6] | Xin -Shan Li.reparation of PZT - NiTi using sol - gel techniques[A].,1996:695. |
[7] | Jin-Rong Cheng;Wenyi Zhu;Nan Li;L. Eric Cross .Electrical properties of sol-gel-derived Pb(Zr_(0.52)Ti_(0.48))O_(3) thin films on a PbTiO_(3)-coated stainless steel substrate[J].Applied physics letters,2002(25):4805-4807. |
[8] | Seveno R;Gundel H W .Preparation of antiferroelectric PZT thin films on LaSrMnO3 coated steel substrates[J].Applied Physics Letters,2001,79:4204. |
[9] | Zou Q;Ruda H E;Yacobi B G .Dielectric properties of lead zirconate titanate thin films deposited on metal foils[J].Applied Physics Letters,2000,77:1038. |
[10] | Giersbach M et al.Ferro and dielectric properties of PZT aerogels[J].Ferroelectrics,2000,241:175. |
[11] | Spierings GACM.;Moors WGJ.;Ulenaers MJE.;Larsen PK.;Dormans GJM. .STRESSES IN PT/PB(ZR,TI)O-3/PT THIN-FILM STACKS FOR INTEGRATED FERROELECTRIC CAPACITORS[J].Journal of Applied Physics,1995(3):1926-1933. |
[12] | Sengupta SS.;Payne DA.;Allen LH.;Park SM. .Origins and evolution of stress development in sol-gel derived thin layers and multideposited coatings of lead titanate[J].Journal of Applied Physics,1998(4):2291-2296. |
[13] | Lappalainen J.;Lantto V.;Frantti J. .ELECTRICAL AND MECHANICAL PROPERTIES OF FERROELECTRIC THIN FILMS LASER ABLATED FROM A PB0.97ND0.02(ZR0.55TI0.45)O-3 TARGET[J].Journal of Applied Physics,1997(7):3469-3477. |
[14] | Zheng X J et al.Residual stress in PZT thin films deposited by MOD[J].Science,2003,49:71. |
[15] | Jang J W;Chung S J;Cho W J et al.Schottky barrier effects in the electronic conduction of sol - gel derived lead zirconate titanate thin film capacitors[J].Journal of Applied Physics,1997,81:6322. |
[16] | OKAZAKI K;Nagata K .Photoresponse probe of the space charge distribution in ferroelectric lead zirconate titanate thin film memory cpapcitors[J].Journal of the American Ceramic Society,1973,56:82. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%