功能材料与器件学报 , 2005, 11(1): 87-91. doi: 10.3969/j.issn.1007-4252.2005.01.020
掺杂 TiO2水泥的吸波性能与力学性能研究
熊国宣 1, , 徐玲玲 2, , 邓敏 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用化学还原及品种媒介生长法制备不同尺寸的金纳米粒子,将其负载在活性炭上获得Au/C催化剂,应用于液相催化氧化乙二醛制备乙醛酸的反应.用TEM表征金粒子的尺寸,研究金纳米粒子尺寸因素对反应速率、产率及选择性等催化性能的影响.结果表明,金纳米催化剂存在着明显的尺寸效应,其中金纳米粒子尺寸在3.5 nm负载形成的1% Au/C催化剂的催化活性最高.","authors":[{"authorName":"苏琳琳","id":"34839aec-1e48-48a6-8538-0f91fd354efb","originalAuthorName":"苏琳琳"},{"authorName":"左川","id":"aa54b1d4-9f64-492b-805b-dd3d1fb08af6","originalAuthorName":"左川"},{"authorName":"侯文明","id":"cc3f3f85-2e57-4023-9713-782df94c9653","originalAuthorName":"侯文明"},{"authorName":"余明坤","id":"ec5f7c23-4894-4075-ad1e-d4dd86d1ba70","originalAuthorName":"余明坤"},{"authorName":"韩媛","id":"4628fa3c-4c85-41d9-aad5-1c7ad6a5159c","originalAuthorName":"韩媛"},{"authorName":"林德玲","id":"780379b7-7b55-4a3f-8562-47b0259e575d","originalAuthorName":"林德玲"},{"authorName":"邢银娟","id":"1f67cad8-130c-446d-83b9-77baacaaca7c","originalAuthorName":"邢银娟"},{"authorName":"王腾","id":"910a8e50-1bdd-440a-85fe-5b103846e17f","originalAuthorName":"王腾"}],"doi":"10.3969/j.issn.2095-1744.2016.02.002","fpage":"6","id":"a6dfe709-d2ba-49ad-8cb5-821c3e2f337e","issue":"2","journal":{"abbrevTitle":"YSJSGC","coverImgSrc":"journal/img/cover/YSJSGC.jpg","id":"76","issnPpub":"2095-1744","publisherId":"YSJSGC","title":"有色金属工程"},"keywords":[{"id":"b2e11fcd-5bd9-495d-90af-bbe2db5e6fbb","keyword":"材料化学","originalKeyword":"材料化学"},{"id":"351b368f-ce0b-409b-a85a-448ec56cdcb7","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"95cf8922-98f0-457f-8a7d-ceb128d447dd","keyword":"尺寸效应","originalKeyword":"尺寸效应"},{"id":"557f9e81-d7d6-4411-bfa2-970af61d1b9a","keyword":"Au/C催化剂","originalKeyword":"Au/C催化剂"},{"id":"24d21d22-dba8-4784-9fd7-11af6dabe95d","keyword":"乙二醛氧化","originalKeyword":"乙二醛氧化"},{"id":"c204b1e6-de24-4728-acba-1923e3315532","keyword":"乙醛酸","originalKeyword":"乙醛酸"}],"language":"zh","publisherId":"ysjs201602002","title":"纳米Au/C催化剂在乙二醛转化为乙醛酸反应中的尺寸效应","volume":"6","year":"2016"},{"abstractinfo":"在200℃自气压水热条件下制备了四氧化三铁与氧化石墨烯复合纳米颗粒.使用透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)等一系列仪器进行表征,结果表明四氧化三铁与氧化石墨烯复合纳米颗粒由粒径大约20nm的四氧化三铁纳米颗粒与氧化石墨烯复合而成,数据分析表明氧化石墨烯对于四氧化三铁纳米颗粒的形成和进一步演化起到了一定的作用.","authors":[{"authorName":"杨俊松","id":"9c0fca32-bc5a-4f4a-be06-852f88939047","originalAuthorName":"杨俊松"},{"authorName":"张晖","id":"f7171c9b-9557-4042-bd61-c3fe8fb36e18","originalAuthorName":"张晖"},{"authorName":"王腾","id":"2d2a0ffc-4048-4c75-adfb-21da8a94e7da","originalAuthorName":"王腾"},{"authorName":"张胜义","id":"4be5c7a4-e07b-4c8b-ac2a-c47005df61aa","originalAuthorName":"张胜义"}],"doi":"","fpage":"100","id":"183cd01b-460a-43c6-a2d3-062f37fe62e3","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"557b0054-cb33-4f70-abae-ef9592ef3848","keyword":"氧化石墨烯","originalKeyword":"氧化石墨烯"},{"id":"f305f6ac-b52d-43cb-8679-87609012015a","keyword":"水热","originalKeyword":"水热"},{"id":"0a1557bf-f260-401b-ad96-098a24d0db55","keyword":"四氧化三铁纳米颗粒","originalKeyword":"四氧化三铁纳米颗粒"}],"language":"zh","publisherId":"gsytb201301019","title":"水热体系中四氧化三铁与氧化石墨烯复合纳米颗粒的合成","volume":"32","year":"2013"},{"abstractinfo":"在200℃自气压水热条件下制备了氧化石墨烯复合金.使用X射线粉末衍射仪(XRD)、扫描电子显微镜( SEM)、透射电子显微镜(TEM)等一系列仪器进行表征,结果表明氧化石墨烯复合金由大约5μm的金颗粒与氧化石墨烯复合而成,形貌分析表明氧化石墨烯对金颗粒的形成和进一步演化起到了一定的作用.","authors":[{"authorName":"杨俊松","id":"04ef2499-5c35-4eb2-afa4-7eb1bb5c812f","originalAuthorName":"杨俊松"},{"authorName":"司友琳","id":"d139350c-a15b-4197-a716-a6a5b679bd15","originalAuthorName":"司友琳"},{"authorName":"王腾","id":"0248dafd-8175-460d-a93f-1833149a525b","originalAuthorName":"王腾"},{"authorName":"张胜义","id":"6eba0075-f8e2-4cff-89e2-b9c9653dd4c7","originalAuthorName":"张胜义"}],"doi":"","fpage":"650","id":"4d0c3e80-ff85-41ce-904d-e2e07dc330ca","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"942d6bfc-383c-419e-9831-a893a8ed4b60","keyword":"氧化石墨烯","originalKeyword":"氧化石墨烯"},{"id":"cec7878c-d24c-4922-abf2-2819c1c84191","keyword":"水热","originalKeyword":"水热"},{"id":"227b6050-1980-4792-9564-ba1de97f1b7a","keyword":"复合金颗粒","originalKeyword":"复合金颗粒"}],"language":"zh","publisherId":"gsytb201203033","title":"水热体系中氧化石墨烯复合金颗粒的合成及表征","volume":"31","year":"2012"},{"abstractinfo":"采用微波辅助凝胶燃烧法制备了Ca2MgSi2O7∶Eu3+红色荧光粉,运用XRD、荧光分光光度计等对合成样品进行分析表征,并探讨了焙烧温度、助熔剂用量、Eu3+浓度等对样品发光性能的影响.结果表明:所得样品为四方晶系的Ca2MgSi2O7晶体结构.Ca2MgSi2O7∶Eu3+的激发光谱由一宽带和一组锐线峰组成,分别归属于Eu3+-O2-之间的电荷迁移态和Eu3+的f→f跃迁.样品的发射光谱主要由两个强发射峰组成,分别位于591 nm和619 nm处,属于Eu3+的5 D0→F1磁偶极跃迁和5D0→7F2的电偶极跃迁.研究发现:当焙烧温度为1000℃、助熔剂H3BO3用量为15%时,样品发光性能较好;Eu3+浓度(x)对样品Ca2-xMgSi2O7∶Eu3x+的发光强度影响较大,当Eu3+浓度x在0.02 ~0.16范围内变化时,随着Eu3+浓度的增加,样品的发光强度不断增加,未出现明显的浓度猝灭现象.","authors":[{"authorName":"翟永清","id":"25d75e88-b7e1-40c3-9092-61200693a36f","originalAuthorName":"翟永清"},{"authorName":"王莉莉","id":"84887572-1a49-4fca-9822-05d22a1264c5","originalAuthorName":"王莉莉"},{"authorName":"马健","id":"594542b6-7ebb-43e5-8f8c-f62bba674235","originalAuthorName":"马健"},{"authorName":"胡志春","id":"e1e1f440-e853-4fb0-9966-2436254db4ff","originalAuthorName":"胡志春"},{"authorName":"王腾","id":"7dbe2ae2-6c0e-40a0-a0ac-bf71b0b33b10","originalAuthorName":"王腾"},{"authorName":"姜楠","id":"2c629417-e749-45d0-957e-925b906b4ac7","originalAuthorName":"姜楠"}],"doi":"","fpage":"78","id":"9813dda0-6632-49a4-96b9-4aa6d9579a59","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"7722c40b-7bed-4e48-afad-53f5072ebc23","keyword":"Ca2MgSi2O7∶Eu3+","originalKeyword":"Ca2MgSi2O7∶Eu3+"},{"id":"8778cecc-3a23-408f-894c-73c75aa8b09e","keyword":"红色发光粉","originalKeyword":"红色发光粉"},{"id":"8684035a-3012-4102-b711-03ee59073072","keyword":"凝胶燃烧法","originalKeyword":"凝胶燃烧法"},{"id":"2f55bef4-b199-4410-a4e9-25670f1f881e","keyword":"发光强度","originalKeyword":"发光强度"},{"id":"6fae74af-f715-4b1c-af3f-2c963b535db9","keyword":"白光发光二极管","originalKeyword":"白光发光二极管"}],"language":"zh","publisherId":"rgjtxb98201301014","title":"微波辅助凝胶燃烧法合成红色荧光粉Ca2MgSi2O7∶Eu3+及性质研究","volume":"42","year":"2013"},{"abstractinfo":"采用Deform-3D有限元软件对扁形钛铜复合棒的挤压过程进行了数值模拟研究,得到了挤压过程中钛和铜的流动规律及应变场分布.分析了挤压速度对产品表面质量、钛铜相对滑移量及钛层厚度的影响.结果表明:随挤压速度的加快,钛铜相对滑移量增加,而钛层厚度变化不大;当挤压速度为100mm/s时挤压产品的质量最好.","authors":[{"authorName":"王腾","id":"072e1b85-e91d-46f1-a02c-9fb3a02e3876","originalAuthorName":"王腾"},{"authorName":"朱梅生","id":"fc2f6051-4dd0-4a28-b6fe-2fb90275c38b","originalAuthorName":"朱梅生"},{"authorName":"吴欢","id":"f84c72e5-8e44-4052-b0c4-2e0e0d8a93bf","originalAuthorName":"吴欢"},{"authorName":"曾卫东","id":"ed325314-b8cf-419e-978b-734bc37e37df","originalAuthorName":"曾卫东"},{"authorName":"倪沛彤","id":"88e1e470-be27-4bfe-b4cd-f81d05aacf4a","originalAuthorName":"倪沛彤"},{"authorName":"王成长","id":"a58584b8-52ef-494b-b164-6ee5b203dc3d","originalAuthorName":"王成长"}],"doi":"","fpage":"145","id":"a71f901b-ba26-47af-8f27-e305f0cd3cd0","issue":"24","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ecc6ec6d-f64d-4ee2-8375-c8ed53e9cf41","keyword":"钛铜复合棒","originalKeyword":"钛铜复合棒"},{"id":"faae06c8-930d-477b-999e-cc45b7f45a5c","keyword":"挤压","originalKeyword":"挤压"},{"id":"382a7629-c8bf-43a9-a38d-412b044bb890","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"cldb201224037","title":"钛铜复合棒挤压过程的数值模拟","volume":"26","year":"2012"},{"abstractinfo":"为了更好地了解Si表面对CaN的吸附,利用基于密度泛函理论的第一性原理平面波赝势方法,计算了Si(100)和Si(111)弛豫表面分别吸附GaN的电子结构、吸附能大小以及其态密度图.计算结果表明,相对于Si(111)表面,Si(100)表面更容易吸附GaN,在同等实验条件下,在Si(100)表面应更容易沉积GaN薄膜.采用ECR-MOPECVD工艺,于低温下在Si(100)衬底上沉积得到了GaN薄膜,XRD谱图表明该薄膜是一种晶体结构和无定形结构的混合结构.","authors":[{"authorName":"李炜","id":"b78488f5-aa05-4c5a-b9d1-32ecf506c2ad","originalAuthorName":"李炜"},{"authorName":"陈俊芳","id":"1987fccb-dd34-43af-b570-12f70c4e3ce5","originalAuthorName":"陈俊芳"},{"authorName":"王腾","id":"816629c3-db13-4912-8e44-e5a792c3a22c","originalAuthorName":"王腾"},{"authorName":"张洪宾","id":"ee331f94-777d-4d7c-94d7-3e49d133f0bd","originalAuthorName":"张洪宾"},{"authorName":"郭超峰","id":"11bdd4cb-31aa-44ce-b08a-b1d3e93fc3c6","originalAuthorName":"郭超峰"}],"doi":"","fpage":"71","id":"d1bf3cc6-9bd4-4765-8098-72efd2d13004","issue":"16","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d8cfc21e-1b3c-4776-8233-e5110c4e768c","keyword":"Si","originalKeyword":"Si"},{"id":"e14a5e1c-81a3-4383-bb96-a842b2f20d39","keyword":"GaN","originalKeyword":"GaN"},{"id":"f27fbecc-a565-437c-8eac-16b24483643c","keyword":"吸附","originalKeyword":"吸附"},{"id":"7bca6b66-7c32-46a3-9e60-8d876b8bbd3f","keyword":"第一性原理","originalKeyword":"第一性原理"}],"language":"zh","publisherId":"cldb200916021","title":"Si表面吸附GaN的第一性原理研究","volume":"23","year":"2009"},{"abstractinfo":"目的:提高金属网栅的屏蔽效能及可视性能。方法采用纳米复合电镀工艺,将碳纳米管附着在金属网栅表面,并对网栅的微观结构、屏蔽效能、透光率进行测试分析。结果施镀后,金属网栅表面的碳纳米管分布均匀,在10 kHz~1 GHz频段的电磁屏蔽效能提高了3~5 dB,可见光透光率降低了5%,金属光泽有所消除。结论碳纳米管可有效提高金属网栅的屏蔽效能和可视性能。","authors":[{"authorName":"马志梅","id":"a890a587-a1dd-4248-9456-51412e440250","originalAuthorName":"马志梅"},{"authorName":"马富花","id":"cca5aafc-d3ca-4e0b-85f1-bd81b080bf4a","originalAuthorName":"马富花"},{"authorName":"李继红","id":"3c81acc5-57e4-4f18-b2bb-21dda4779907","originalAuthorName":"李继红"},{"authorName":"王腾","id":"106d8269-9102-406d-b16c-4754cb98b88b","originalAuthorName":"王腾"},{"authorName":"许晓丽","id":"ebced62c-7740-4acf-ae56-e55da0de267d","originalAuthorName":"许晓丽"}],"doi":"","fpage":"101","id":"dcf272c6-f4fe-4dac-b66f-b166cc407a26","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"9a9aa67c-3da1-4266-856f-a2f90483046a","keyword":"金属网栅","originalKeyword":"金属网栅"},{"id":"c9ec1180-723e-44b0-bdd5-d36cbe11f139","keyword":"纳米复合镀","originalKeyword":"纳米复合镀"},{"id":"7c907f12-0d37-432d-8cc3-a072c9a17a57","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"e0b5beb9-bf9d-47b5-8294-1ed1947c751c","keyword":"屏蔽效能","originalKeyword":"屏蔽效能"},{"id":"0ca593a7-8da3-4762-bc88-88e3a05ea757","keyword":"可视性能","originalKeyword":"可视性能"}],"language":"zh","publisherId":"bmjs201403020","title":"碳纳米管对金属网栅电磁屏蔽效能及可视性的影响","volume":"","year":"2014"},{"abstractinfo":"目的 研究热障涂层( TBC)和纯粘结层( BC)在1100 ℃下的氧化动力学,探讨热障涂层中热生长氧化物( TGO)组织结构的演化规律. 方法 运用大气等离子喷涂技术( APS)制备涂层,对比分析热障涂层和纯粘结层涂层在1100 ℃下等温氧化2 ,5 ,10 ,20 ,50 ,100 ,200 ,350 h后TGO的厚度变化,并对粘结层表面和热障涂层截面分别进行XRD和SEM分析. 结果 热障涂层和纯粘结层在1100 ℃下的氧化动力学均遵循抛物线规律,其氧化速率常数分别为0. 344,0. 354 μm/h0. 5. 等温氧化5 h后,TGO的主要成分为α-Al2 O3;随氧化时间的增加,生成Cr2 O3、尖晶石、CoO和NiO的混合氧化物;等温氧化100 h后,CoO消失,NiO的含量减少,Cr2 O3 和尖晶石氧化物的含量增加;等温氧化350 h后,TGO中出现了裂纹,但涂层仍未剥落,TGO最终由顶层多孔的混合氧化物层和底层具有柱状晶结构的α-Al2 O3 层组成. 结论 顶层陶瓷层( TC)对热障涂层氧化速率常数的影响很小. TGO中α-Al2 O3 首先形成并以柱状结晶的方式生长,混合氧化物在α-Al2 O3 上形成,TGO生长速度逐渐变缓.","authors":[{"authorName":"刘小菊","id":"89ee4600-f6ee-4546-92e5-c2b1447bd821","originalAuthorName":"刘小菊"},{"authorName":"王腾","id":"d16b7dc5-2bc3-4e3e-b71f-592384667d70","originalAuthorName":"王腾"},{"authorName":"李偲偲","id":"a243c95f-49f0-4a7c-93d3-c75ea7c7cf8a","originalAuthorName":"李偲偲"},{"authorName":"李强","id":"e62f97a2-2486-4a4b-92e4-c2305ebfd5dd","originalAuthorName":"李强"}],"doi":"10.16490/j.cnki.issn.1001-3660.2015.11.015","fpage":"91","id":"e654a293-a97f-47e6-8fbd-b4fe4468dfed","issue":"11","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"ce6b605a-6d3e-417f-a12f-c8211fbd23fc","keyword":"APS","originalKeyword":"APS"},{"id":"6c7478ef-881c-45c2-b7e9-a49f1e4facb7","keyword":"热障涂层","originalKeyword":"热障涂层"},{"id":"c25e89ce-1be1-4d3a-a918-10234688b689","keyword":"等温氧化","originalKeyword":"等温氧化"},{"id":"95f52e58-c000-4077-8ae2-95843a6e63ca","keyword":"热生长氧化物","originalKeyword":"热生长氧化物"},{"id":"6d9811ea-8553-4405-b358-4b99c279d6b8","keyword":"生长动力学","originalKeyword":"生长动力学"},{"id":"ede1e3e4-c417-4b4c-97ad-7eb486e7c664","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"bmjs201511015","title":"等离子喷涂热障涂层高温TGO的形成与生长研究","volume":"44","year":"2015"},{"abstractinfo":"为研究薄膜材料在强电场激励下的相变特性,采用直流磁控溅射工艺在硅衬底表面制备厚度不同的二氧化钒薄膜,搭建基于静电高压源和铜质电极夹具的材料相变特性测试系统.通过改变外施电场强度,研究薄膜材料的场致相变特性.结果表明:外施场强达到600 kV/m左右时,材料表现出明显的绝缘态-金属相变(MIT)特性;外施场强达到700kV/m时,材料电导率的变化幅度超过2.6个数量级,且远未达到饱和,随外场继续增加仍有很大上升空间.","authors":[{"authorName":"李昂","id":"48925f33-ebbb-4b0e-9a84-3c16e7dd6f91","originalAuthorName":"李昂"},{"authorName":"王庆国","id":"e4fb8ac0-a1b3-4559-88d3-77b480058f42","originalAuthorName":"王庆国"},{"authorName":"王腾","id":"b85ef928-9640-4398-bca9-109c65284e56","originalAuthorName":"王腾"},{"authorName":"王妍","id":"203ca763-e72e-4454-a126-2aecc54b5b5f","originalAuthorName":"王妍"},{"authorName":"成伟","id":"c9b95ccc-0d06-49c2-8205-340ac68675fe","originalAuthorName":"成伟"}],"doi":"","fpage":"52","id":"b17f0099-3239-40c9-9d42-4b3bae5b96bc","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"827d22fb-3a39-48cb-be9e-78565ad72490","keyword":"二氧化钒薄膜","originalKeyword":"二氧化钒薄膜"},{"id":"b00bed2e-5360-487d-885f-7c59a2e92aed","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"8a975b65-0080-4537-9468-14d693f1faee","keyword":"强电场环境","originalKeyword":"强电场环境"},{"id":"ec8ee749-b130-4955-968f-f1de5a61f565","keyword":"场致相变","originalKeyword":"场致相变"},{"id":"fb0852f3-f7cb-46aa-bc3d-730f2ce7fb8a","keyword":"电导率","originalKeyword":"电导率"}],"language":"zh","publisherId":"bqclkxygc201606013","title":"强电场条件下二氧化钒薄膜的相变特性研究","volume":"39","year":"2016"},{"abstractinfo":"采用喷淋方法对无铬涂层镀锌钢板进行清洗和磷化等前处理后,采用扫描电镜、能谱仪和低表面电阻测量仪等手段研究了喷淋后无铬涂层的表面形貌、化学成分和附着力性能.结果表明:碱性清洗液pH不大于11.0时,无铬涂层可与碱性清洗液反应产生涂层表面有限的溶胀、溶解,露出更多的锌凸起峰从而提高钢板的导电性能;在磷化处理过程中,随磷酸锌溶液pH的降低,磷酸盐形成量增加,但难以形成扇骨状的磷酸盐晶片,故磷酸液pH应大于3.5.","authors":[{"authorName":"柴立涛","id":"da580aea-420c-4881-a271-fa0dcac83139","originalAuthorName":"柴立涛"},{"authorName":"赵云龙","id":"feed191d-582a-4efb-847b-3891c80cd238","originalAuthorName":"赵云龙"},{"authorName":"岳崇锋","id":"54030e6f-eb76-4e78-b037-c803741373e7","originalAuthorName":"岳崇锋"},{"authorName":"张启富","id":"089a8956-40fb-439c-bd57-d1c83237b354","originalAuthorName":"张启富"},{"authorName":"王腾","id":"b804a9b0-8617-46f3-a6b2-643caef9d59e","originalAuthorName":"王腾"}],"doi":"10.11973/fsyfh-201701018","fpage":"78","id":"6ed50973-ea00-4709-b867-06ea46112fcb","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"c8374b46-7199-49a4-a08a-a66fe7446468","keyword":"无铬涂层","originalKeyword":"无铬涂层"},{"id":"f58cdd1c-53e1-44e3-97bc-bc52ce5e1a6f","keyword":"镀锌钢板","originalKeyword":"镀锌钢板"},{"id":"ca62c3e1-ff58-4e14-b039-ee0d7a60fc46","keyword":"涂装性能","originalKeyword":"涂装性能"}],"language":"zh","publisherId":"fsyfh201701018","title":"前处理工艺对无铬涂层镀锌钢板性能的影响","volume":"38","year":"2017"}],"totalpage":9,"totalrecord":82}