欢迎登录材料期刊网

材料期刊网

高级检索

应用第一性原理DFT(密度泛函理论)研究了具有(1×1)和(2×1)对称性的SnO2(110)氧化表面、还原表面和缺陷表面的几何结构与电子结构,重点分析了表面氧空穴(O vacancy)对表面电子结构的影响以及对气体分子吸附的影响.研究结果表明,由于表面空穴的存在,SnO2(110)表面能隙中都出现了明显的表面态,由于表面氧的流失而留下来的电荷是产生这些表面态的主要原因,这些电荷主要集中在Sn上和附近的空穴中,与这些电荷相关的轨道是氧化物表面吸附研究的关键.

参考文献

[1] Vilho Lantto;Tapio T. Rantala;Tuomo S. Rantala .Atomistic understanding of semiconductor gas sensors[J].Journal of the European Ceramic Society,2001(10/11):1961-1965.
[2] Samson S;Fonstad C G .Defect structure and electronic donor levels in stannic oxide crystals[J].Journal of Applied Physiology,1973,44:4618-4621.
[3] Fonstad C G;Rediker R H .Electrical properties of high-quality stannic oxide crystals[J].Journal of Applied Physiology,1971,42:2911-2918.
[4] Segall MD.;Lindan PJD.;Probert MJ.;Pickard CJ.;Hasnip PJ.;Clark SJ. Payne MC. .First-principles simulation: ideas, illustrations and the CASTEP code[J].Journal of Physics. Condensed Matter,2002(11):2717-2744.
[5] Goniakowski J.;Kantorovich LN.;Gillan MJ.;White JA.;Holender JM. .INFLUENCE OF GRADIENT CORRECTIONS ON THE BULK AND SURFACE PROPERTIES OF TIO2 AND SNO2[J].Physical Review.B.Condensed Matter,1996(3):957-960.
[6] Perdew J P;Cbevary J A;Vosko S H et al.Atoms,molecules,solids,and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J].Physical Review B,1992,46:6671-6687.
[7] Maki-Jaskari MA;Rantala TT;Golovanov VV .Computational study of charge accumulation at SnO2(110) surface[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2005(2/3):127-138.
[8] Maki-Jaskari MA.;Rantala TT. .Theoretical study of oxygen-deficient SnO2(110) surfaces - art. no. 245428[J].Physical Review.B.Condensed Matter,2002(24):5428-0.
[9] Ménétrey M;Markovits A;Minot C et al.Formation of Schottky defects at the surface of MgO,TiO2,and SnO2:A comparative density functional theoretical study[J].Journal of Physical Chemistry B,2004,108:12858-12864.
[10] Haines J.;Leger JM. .X-RAY DIFFRACTION STUDY OF THE PHASE TRANSITIONS AND STRUCTURAL EVOLUTION OF TIN DIOXIDE AT HIGH PRESSURE - RELATIONSHIPS BETWEEN STRUCTURE TYPES AND IMPLICATIONS FOR OTHER RUTILE-TYPE DIOXIDES[J].Physical Review.B.Condensed Matter,1997(17):11144-11154.
[11] Sensato FR.;Custodio R.;Calatayud M.;Beltran A.;Andres J.;Sambrano JR.;Longo E. .Periodic study on the structural and electronic properties of bulk, oxidized and reduced SnO2(110) surfaces and the interaction with O-2[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2002(1/3):408-420.
[12] Calatayud M.;Beltran A.;Andres J. .A theoretical analysis of adsorption and dissociation of CH3OH on the stoichiometric SnO2(110) surface[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,1999(1/3):213-222.
[13] Lindan PJD. .Water chemistry at the SnO2(110) surface: the role of inter-molecular interactions and surface geometry[J].Chemical Physics Letters,2000(4-6):325-329.
[14] Godin T J;LaFemina J P .Surface atomic and electronic structure of cassiterite SnO2 (110)[J].Physical Review B,1993,47:6518-6523.
[15] Sinner-Hettenbach M.;Weissenrieder J.;von Schenck H.;Weiss T.;Barsan N.;Weimar U.;Gothelid M. .Oxygen-deficient SnO2(110): a STM, LEED and XPS study[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2001(1):50-58.
[16] Robertson J .Electronic structure of SnO2,GeO2,PbO2,TeO2 and MgF2[J].J Phys C:Solid State Ways,1979,12:4767-4776.
[17] Manassidis I.;Kantorovich LN.;Gillan MJ.;Goniakowski J. .THE STRUCTURE OF THE STOICHIOMETRIC AND REDUCED SNO2(110) SURFACE[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,1995(3):258-271.
[18] Oviedo J.;Gillan MJ. .The energetics and structure of oxygen vacancies on the SnO2(110) surface[J].Surface Science: A Journal Devoted to the Physics and Chemistry of Interfaces,2000(1/3):35-48.
[19] Cox D F;Fryberger T B;Semancik S .Oxygen vacancies and defect electronic states on the SnO2 (110)-1×1 surface[J].Physical Review B,1988,38:2072-2085.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%