气-液-固法(VLS)是目前生长各种准一维纳米结构的主要工艺技术.本文首先介绍了VLS的生长原理,然后以生长机制为主线,着重评论了近3-5年内它在ZnO、GaN、Si以及SiC等纳米线及其阵列合成中应用的某些新进展.最后提出了改进VLS方法的几项措施,并展望了它的今后发展趋势.
参考文献
[1] | He H P;Tang H P;Ye Z Z et al.Temperature-dependent photolumineseence of quasialigned Al-doped ZnO nanorods[J].Applied Physics Letters,2007,90(02):023104. |
[2] | Pai-Chun Chang;Zhiyong Fan;Chung-Jen Chien;Daniel Stichtenoth;Carsten Ronning;Jia Grace Lu .High-performance ZnO nanowire field effect transistors[J].Applied physics letters,2006(13):133113-1-133113-3-0. |
[3] | Baoqing Zeng;Guangyong Xiong;Shuo Chen;S. H. Jo;W. Z. Wang;D. Z. Wang;Z. F. Ren .Field emission of silicon nanowires[J].Applied physics letters,2006(21):213108-1-213108-3-0. |
[4] | Park HD;Prokes SM;Cammarata RC .Growth of epitaxial InAs nanowires in a simple closed system[J].Applied physics letters,2005(6):3110-1-3110-3-0. |
[5] | Chan S K;Cai Y;Wang N et al.Controls of growth orientation for epitaxially grown ZeSe nanowires[J].Applied Physics Letters,2006,88(01):013108. |
[6] | 焦永峰,彭同江,马国华.硫化镉量子线及其阵列制备方法的评述[J].人工晶体学报,2005(02):313-318,305. |
[7] | 木久顺一;福井孝志 .半导体纳米线与器件应用[J].应用物理,2006,75(03):296-302. |
[8] | Michael H. Huang;Yiying Wu;Henning Feick;Ngan Tran;Eicke Weber;Peidong Yang .Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport[J].Advanced Materials,2001(2):113-116. |
[9] | Joodong Park;Han-Ho Choi;Kerry Siebein;Rajiv K. Singh .Two-step evaporation process for formation of aligned zinc oxide nanowires[J].Journal of Crystal Growth,2003(3/4):342-348. |
[10] | Guoqiang Zhang;Atsushi Nakamura;Toru Aoki;Jiro Temmyo;Yoshio Matsui .Au-assisted growth approach for vertically aligned ZnO nanowires on Si substrate[J].Applied physics letters,2006(11):113112-1-113112-3-0. |
[11] | 唐斌,邓宏,税正伟,陈金菊,韦敏.CVD法制备高质量ZnO纳米线及生长机理[J].人工晶体学报,2007(02):293-296. |
[12] | Fan H J;Scholz R;Zacharias M et al.Local luminescence of ZnO nanowire-covered surface:A cathodoluminessence microscopy study[J].Applied Physics Letters,2005,86(02):023113. |
[13] | Zhang YF;Russo RE;Mao SS .Femtosecond laser assisted growth of ZnO nanowires[J].Applied physics letters,2005(13):3115-1-3115-3-0. |
[14] | Zhang YF;Russo RE;Mao SS .Quantum efficiency of ZnO nanowire nanolasers[J].Applied physics letters,2005(4):3106-1-3106-3-0. |
[15] | Levin I;Davydov A;Nikoobakht B;Sanford N;Mogilevsky P .Growth habits and defects in ZnO nanowires grown on GaN/sapphire substrates[J].Applied physics letters,2005(10):3110-1-3110-3-0. |
[16] | Liu BD;Bando Y;Tang CC;Xu FF;Golberg D .Quasi-aligned single-crystalline GaN nanowire arrays[J].Applied physics letters,2005(7):3106-1-3106-3-0. |
[17] | Ng D K T;Tan L S;Hong M H .Synthesis of GaN nanowires on gold -coated substrates by pulsed laser ablation[J].Current Apllied Physics,2006,6:403-406. |
[18] | Subhajit Biswas;Soumitra Kar;Tandra Ghoshal;Vishal D. Ashok;Supriya Chakrabarti;Subhadra Chaudhuri .Fabrication of GaN nanowires and nanoribbons by a catalyst assisted vapor-liquid-solid process[J].Materials Research Bulletin: An International Journal Reporting Research on Crystal Growth and Materials Preparation and Characterization,2007(3):428-436. |
[19] | Chang CY;Pearton SJ;Huang PJ;Chi GC;Wang HT;Chen JJ;Ren F;Chen KH;Chen LC .Control of nucleation site density of GaN nanowires[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2007(6):3196-3200. |
[20] | Kipshidze G;Yavich B;Chandolu A;Yun J;Kuryatkov V;Ahmad I;Aurongzeb D;Holtz M;Temkin H .Controlled growth of GaN nanowires by pulsed metalorganic chemical vapor deposition[J].Applied physics letters,2005(3):3104-1-3104-3-0. |
[21] | Cai X M;Djurisie A B C;Xie M H et al.Growth mechanism of stacked-cone and smoth-surface GaN nanowircs[J].Applied Physics Letters,2005,87(18):183103. |
[22] | Cai XM;Djurisic AB;Me MH .GaN nanowires: CVD synthesis and properties[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2006(3):984-989. |
[23] | Jie Zhan;Rujun Liu;Xiaopeng Hao;Xutang Tao;Minhua Jiang .Growth of GaN nanowires through a pyrolysis method with vapor–liquid–solid mechanism[J].Surface & Coatings Technology,2007(9/11):5578-5581. |
[24] | Hannon J B;Kodambaka s;Ross F M et al.The influence of the surface migration of gold on the growth of silicon nanowires[J].Nature,2006,440:69-71. |
[25] | Alhuschies J;Baus M;Winkler O et al.High-density silicon nanowire growth form self-assembled Au nanoparticles[J].Microelectronic Engineering,2006,83:1530-1533. |
[26] | Lugstein A;steinmair M;Hyun Y J et al.[J].Applied Physics Letters,2007,90(02):023109. |
[27] | Dinesh Kumar Sood;Praveen Kumar Sekhar;Shekhar Bhansali .Ion implantation based selective synthesis of silica nanowires on silicon wafers[J].Applied physics letters,2006(14):143110-1-143110-3-0. |
[28] | Y.Y. Wong;M. Yahaya;M. Mat Salleh;B. Yeop Majlis .Controlled growth of silicon nanowires synthesized via solid-liquid-solid mechanism[J].Science and technology of advanced materials,2005(3/4):330-334. |
[29] | Liang CH.;Zhang LD.;Wu YC.;Cui Z.;Meng GW. .Large-scale synthesis of beta-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles[J].Chemical Physics Letters,2000(3-4):323-328. |
[30] | Deng SZ.;Wu ZS.;Zhou J.;Xu NS.;Chen R.;Chen J. .Synthesis of silicon carbide nanowires in a catalyst-assisted process[J].Chemical Physics Letters,2002(5-6):511-514. |
[31] | B.-C. Kang;S.-B. Lee;J.-H. Boo .Growth of β-SiC nanowires on Si(100) substrates by MOCVD using nickel as a catalyst[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2004(10):215-219. |
[32] | Kang BC;Moon OM;Boo JH .A comparative study on SiC thin films grown on both uncatalyzed and Ni catalyzed Si(100) substrates by thermal MOCVD using single molecular precursors[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2006(1/2):181-185. |
[33] | Liu J X;Lu B .SiC nanawires synthesized by microwave sintering[J].Journal of Nanoscience and Nanotechnology,2007,11:281-285. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%